
This micro iehe was

Yli d l eets th
ec itl cat IO

C
owback im

eresult of th
racteristics of the

inal document.

SOFIWARE ENGINEERING LABORATORY SERIES SEL-941002

SOFlWARIE MEASUREMENT
GUIDEBOOK

JULY 1994

National Aeronautrcs and
Space Administration

Goddard Space Flight Center
Greenbeft, Maryland 20771

Foreword

The Software Engineering Laboratory (SEL) is an organization sponsored by the National
Aeronautics and Space AdministrationGoddard Space Flight Center (NASAiGSFC) and created
to investigate the effectiveness of software engineering technologies when applied to the
development of applications software. The SEL was created in 1976 and has three primary
organizational members:

NASNGSFC, Software Engineering Branch

University of Maryland, Department of Computer Science

Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (I) to understand the software development process in the GSFC
environment; (2j to measure the effects of various methodologies, tools, and models on this
process: and (3) to identify and then ! J apply successful development practices. The activities,
findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory
Series. a continuing series of rcprts brit includes this document.

This Software bfeusurernent Guidebook has also becn released as NASA-GB-001-94. a product
of the Softwarc Engineering Program established by the Office of Safety and Mission Assurance
(Code Q) at NASA Headquarters.

The following are primary contributors to this document:

Mitchell j. Bassman, Computer Sciences Corporation

Frank McGarry, Goddard Space Flight Center

Rose Pajerski, Goddard Space Flight Center

Single copies of this dociiment can be obtained by writing to

Software Engineering Branch
Code 552
Goddard Space Flight Center
Greenbelt, Maryland 2077 1

This Sofhvare Measitrement Guidebook presents information on the purpose and importance of
measurement. It discusses the specific procedures and activities of a measurement program and
the roles of the people involved. The guidebook also clarifie. the role that measurement can and
mus: play in the goal of continual, sustained improvement for all software production and
maintenance efforts.

SEL-94-002

Contents

... Fore word .. III

Abstract .. v

Chapter 1 . Introduction .. 1
1.1 Background ... 1

1.2 Purpose .. 2

Chcpter 2 . The Role of Measurement in Software Engineering ... 5
Measurement To Increase Understanding ... 6
Measurement for Managing Software ... 12

Planning and Estimating .. 13

2.2.3 Validatine ... 16
Measurement for Guiding Improvement ... 16
2.3.1 Understanding .. 18

Chapter 3 . Establishing a Measurement Program .. 21
3.1 Goals ... 22
3.2 Scope ... 23

Roles, Responsibilities, and Structure ... 24
3.3.1
3.3.2 Andysis and Packaging .. 26
3.3 -3 Technical Support ... 26
Selecting the Measures ... 28
Cost of Measurement .. 30

. . 1.3 Organizauon ... 2

2.1
2.2

2.2.1
2.2.2 Tracking ... 15

2.3

2.3.2 Assessing .. 19
2.3.3 Packaging ... 20

3.3
The Source of Data ... 25

3.4
3.5

3.5.1
3.5.2
3.5.3

Cost to Development and Maintenance Component .. 32
Cost of Data Processing .. 32
Cost of -4nalysis and Packaging .. 33

Chapter 4 . Core Measures .. 35
4.1 Cost ... 36

4.1 -1 Description .. 37
4.1.2 Data Definition ... 37

4.2 crrors ... 39
4.2.1 Description .. 39
4.2.2 Data Definition ... 40

-

4.3 Process Characteristics ... 41

SEL-94-002

4.3.1 Description .. 41
4.3.2 Data Gefinition ... 42

4.4 Project Dynamics .. 43
4.4.1 Description ... 43
4.4.2 Data Definition ... 43

4.5 Project Characteristics .. 44
4.5.1 Description ... 45
4.5.2 Data Definition ... 46

Chapter 5 . Operation of a Measurement Program ... 51

5.1

5.2

5.3

Development and Maintenance ... 53

Participating in Studies ... 54
Technical Support .. 54

5.1 . 1
5 . I . 2

5.2.1 Collecting Data ... 54
5.2.2 Storing and Quality Assuring Data .. 56
5.2.3 Summarizing, Reporting, and Exporting Data ... 57

Designing Process Improvement Studies ... 59

Packaging the Results ... 61

Providing Data .. 53

Analysis and Packaging ... 58

Analyzing Project Data ... 60
5.3.1
5.3.2
5.3.3

Chapter 6 . Analysis. Application. and Feedback ... 69
6.1 Understanding .. 70

6.1.3 Error Characteristics ... 80

6.1.1 Software Attributes ... 71
6.1.2 Cost Characteristics .. 75

6.1.4 Project Dynamics .. 84
6.2 Managing ... 85

6.2. I Planning .. 86
6.2.2 Assessing Progress .. 89

Chapter 7 . Experience-Based Guidelines ... 103

Appendix B . Sample Process Study Plan ... 127

Appendix C . List of Rules ... 129

6.2.3 Evaluating Processes ... 95
6.3 Guiding improvement ... 96

Appendix A . Sample Data Collection Forms ... 109

Abbreviations and Acronyms ... 131

References ... 133
Standard Bibliography of SEL Literature ... 135

SEL-94-002 ...
vlll

Figures

2- 1
2-2
2-3

2-4
2-5
2-6
2-7
2-8
2-9
3- 1
3-2
3-3
4- 1

4-2

4-3
4-4
4-5
5- 1

5-2
5-3

5-4

5-5

5-6

5-7
5-8
6- 1

6-2
6 -3
6-4

6-5
6-6

Motivation for Understanding the Software Engineering Process 7

Effort Distribution by Activity ... 9
Error Class Distribution ... 10

Growth Rate of Source Code .. 1 1
Change Rate of Source Code ... 12
Sample Process Relationships .. 13

Tracking Growth Rate ... 15

The UnderstancUAssessflackage Paradigm .. 18

The Three Components of ~1 Measurement Program .. 25

Cost of Software Measurement ... 31

The Five Maturity Levels of the CMM .. 17

The SEL as a Sample Structure for Process Improvement ... 28

Cost Data Collection Summary .. 39
Error Dau Collection Summary .. 41

Process Characteristics Data Collection Summary ... 43

F’roject Dynamics Collection Summary .. 44
Project Characteristics Collection Summary ... 49
Three Data Collection Mechanisms ... 52
Project Summary Statistics .. 58

Process Study Pian Outline .. 60
High-Level Development Project Summary Rep0 rt .. 62
High-Level Maintenance Project Summary Report .. 63

Impact of Ada on Effort Distribution ... 64
Sample Error Rate Model .. 65
SME Architecture and Use .. 67
Language Usage Trend .. 73
Code Reuse Trend ... 74

Derivation of 20 Percent Reuse Cost Factor for FORTRAN .. 76
Derivation of 30 Percent Reuse Cost Factor for Ada ... 77
Effort Distribution Model .. 78

Staffing Profile iModel ... 78

ix SEL-94-002

6-7

6-8

6-9

6-10

6-1 1

6-12

6-13

6-14

6-15

6-16

6-17

6-18

6-19

6-20

6-2 1

6-22

6-23

6-24

7-1

A- 1

A-2

A-3

A 4

A-5

A-6

A-7

A-8

A-9

A-10

A-1 1

A-12

A-I3

Typical Allocation of Software Project Resources ... 8 1

Comparative Error-Class Distributions .. 83

Cyclomatic Complexity and SLOC as lndicators of Eirrors (Preliminary Analysis) 84

Planning Project Dynamics .. 89

Growth Rate Deviation ... 91

Change Rate Deviation .. 91

Tracking Discrepancies ... 93

Error Detection Rate by Phase .. 82

Growth Rate Model .. 85

Staff Effort Deviation .. 92

Projecting Software Quality ... 94

Impact of the Cleanroom Method on Software Growth ... 95

Impact of the Cleanroom Method on Effort Distribution .. 98

Impact of IV&V on Requirements and Design Errors ... 100
Percentage of Errors Found After Starting Acceptance Testing -101

Impact of IV&V on Effort Distribution .. 102

Examples of Measures Collected Manually ... 108

Component Origination Form ... 112

Development Status Form .. 113

Personnel Resources Form ... 115

Personnel Resources Form (Cleanroom Version) .. 116

Project Completion Statistics Form .. 117

Project Estimates Form .. 118

ServicesRroducts Form .. 120

Subjective Evaluation Form .. 121

Subsystem Information Form .. 124

IV&V Error Rates by Phase ... 101

Impact of IV&V on Cost .. 102

Change Report Form .. 110

Maintenance Change Report Form ... 114

Project Startup Form .. 119

Weekly Maintenance Effort Form ... 125

SEL-94-002 X

2- 1
2-2
2-3
4- 1

4-2
4-3
4-4

4-5
6- 1

6-2
6-3
6-4
6-5
6-6
6-7
6-8

6-9
7- 1

A- 1

. . Sample Software Charactenstlcs .. 8
Distribution of Time Schedule and Effort Over Phases ... !4
Impact of the Cleanroom Method on Reliability and Productivity 19

Data Provided Directly by Project Personnel ... 38

Change Data ... 40

Process Characteristics Data .. 42
Project Dynamics Data .. 44
Project Characteristics Data .. 47
Questions Leading to Understanding ... 71

Software Attribute Data .. 72

Analysis of Maintenance Effort Data ... 80

Questions Supporting Management Activities .. 86

IndicatGrs of Change Attributable to Cleanroom .. 97
Impact of the Cleanroom Method on Reliability and Productivity 99

Indicators of Change Attributable to IV&V .. 100

Examples of Automated Measurement Support Tools .. 107

SEL Data Collection Forms .. 109

Basis of Maintenance Costs Estimates ... 80

Project Planning Estimates .. 88

SEL-94-002

Chapter 1 Introduction

1 .l Background

T his Sofmare Measurement Guidebook is based on the extensive experience of several
organizations that have each developed and applied significant measurement' programs
over a period of at least 10 years. One of these organizations, the Software Engineering

Laboratory (SEL) at the National Aeronautics and Space Administration (NASA) Goddard Space
Flight Center (GSFC), has been studying and applying various techniques for measuring software
since 1976. During that period, the SEL has collected measurement data from more than 100
flight dynamics projects ranging in size from 10,OOO to over 1,000,OOO source lines of code
(SLOC). These measurement activities have generated over 200,000 data collection forms, are
reflected in an online database, and have resulted in more than 200 reports and papers. Mcre
significantly, they have been used to generate software engineering models and relationships that
have been the basis for the software engineering policies, standards, and procedures used in the
development of flight dynamics softwrire.

Many other organizations in both Government and industry have documented their significant
measurement experiences. (See, for example, References 1 through 7.) The lessons derived from
those experiences reflect not only successes but also failures. By applying those lessons, an
organization can minimize, or at least reduce, the time, effort, and frustration of introducing a
software measurement program.

The Sofhvure Measurement Guidebook is aimed at helping organizations to begin or improve a
measurement program. It does nut provide guidance for the extensive application of specific
measures (such as how to estimate software cost or analyze software complexity) other than by
providing examples to clarify points. It does contain advice for establishing and using an effective
software measurement program and for understanding some of the key lessons that other
organizaticns have learned. Some of that advice will appear counterintuitive, but it is all based on
actual experience.

Although all of the information presented in this guidebook is derived from specific experiences of
mature measurement programs, the reader must keep in mind that the characteristics of every
organization are unique. Some degree of measurement is critical for all software development and
maintenance organizations, and most of the key rules captured in this report will be generally
applicable. Nevertheless, each organization must strive to understand its own environment so that
the measurement program can be tailored to suit its characteristics and needs.

Historically, many software organizations have established development and maintenance
processes and standards in an ad hoc manner, on the basis of guidance from outside the
organization, or from senior personnel called upon to establish company standards. Often, this
approach has led to incompatibilities, unconvinced development groups, and, occasionally,
complete confusion. Too often, organizations attempt to generate policies or standards and to

~ ~~

Some organizations use the terms metrics and measurement interchangeably.

1 SEL-94-002

adopt particular technologies without first understanding the existing processes and environment.
This lack of understanding can make a bad situation worse. Before establishing policies and
defining standards, an organization must clearly understand the environment and the existing
processes. A commitment to understand and improve local software processes requires the
establishment of a software measurement program, which is the precursor to continual process
improvement.

The following rul: is the single most important one regarding software measurement:

Understand that software measurement i s a means to an end,
not an eord in itself.

A measurement program without a clear purpose will result in frustration, waste, annoyance, and
confusion. To be successful, a measurement program must be viewed as one tool in the quest for
the improved engineering of software.

1.2 Purpose
The purpxe of this Sojhure Meusurernent Guidebook is threefold. First, it presents information
on the purpose and importance of measurement-information that has grown out of successful
measurement applications.

Second, the guidebook presents the specific procedures and activities of a measurement program
and the roles of the people involved. This guidebook discusses the basic set of measures that
constitutes the core of most successful measurement programs. It also provides c3me guidance
for tailoring measurement activities as a program matures and an organization captures its own
expeiiences.

Findly, the guidebook clarifies the role that measurcment can and must play in the goal of
continual, sustained improvement for all software production and maintenance efforts throughout
NASA. As NASA matiires in its understanding aid application of software, it is attempting to
apply the most appropriate software technologies and methodologies available. Like any other
software organization, NASA must build a firm foundation for software standards, policies, and
procedures. A carefully established measurement program can provide the rationale for
management decision making, leading to achievement of the goal of sustained improvement.

1.3 Organization
This “Introduction” is followed by six additional chapters and three appendices.

Chapter 2, “The Role of Measurement in Software Engineering,” lays the groundwork. for
establishing a measurement program. The chapter explains why any software group should have a
well-defined measurement program and provides examples of supporting data that can be valuable
in justifying the costs involved in implementing such a program.

Chapter 3, “Establishing a Measurement Program,” describes the essential steps for starting a
measurement program. The chapter includes organization, key measurement data, classes and

SEL-94-002 2

sources of data, general cost information, and, most important, goal setting and application of the
measurement program.

Chapter 4, “Core Measures,” introduces the recommended core set of measures that can benefit
any software organization.

Chapter 5 , “Operation of a Measurement Program,” discusses major organizational issues, data
collection and storage, quality assurance (QA) of the data, feedback of data, and cost of
operations.

Chapter 6, “Analysis, Application, and Feedback,” presents information on the analysis of
measurement data and the application and feedback of information derived from a measurement
program.

Chapter 7, “Experience-Based Guidelines,” offers some precautions for software organizations
that plan to include software measurement among their development and maintenance processes.

Appendices A, B, and C provide sample data collection forms, a sample process study plan, and a
list of rules, respectively.

3 SEL-94-002

Chapter 2. The Role of Measurement in Software
Engineering

- . . -

Managing Software Projects
Planning and estimating

0 Tracking actuals versus estimates
0 Validating models

Guiding Process Improvement
e Understanding

Assessing
e Pacbging

T his chapter clarifies the role that a software measurement program czn play in support of
software development and maintenance activities and provides sound motivation for any
organization to initiate or expand its analysis of data and applicatior? of results. The

chapter explains the three key reasons for an organization to measure its software engineering
processes and product, providing actual examples from software organizations wilii mature
measurement programs.

A software organization may want to establish a software measmment program for many
reasons. Those range from having good management information for guiding software
development to carrying out research toward the development of some innovative advanced
technique. However, more than 17 years of experience with software measurement activities
within NASA have shown that the three key reasons for software measuremelit are to

1. Understand and model software engineering processes and products

2. Aid in the management of software projects

3. Guide improvements in software engineering processes

Any one of these m o n s should be enough to motivate an organization to implement a
measurement program. The underlying purpose of any such program, however, must be to
achieve specific results from the use and application of the measures; collecting data is nor the
objective. Most faded measurement programs suffer from inadequate or unclear use of data, not
from an inadequate or unclear data collection process. The rule in Chapter 1 implies that the
measurement program must be defined in a way that satisfies specific objectives. Without such
objectives, no benefit will be derived from the measurement effort.

2.1 Measurement To Increase Understanding
The most important reason for establishing a measurement program is to evolve toward an
understanding of software and the software engineering processes in order to derive models of
those processes and examine ::lationships among the process parameters. Knowing what an
organization does and how it operates is a fundamental requirement for any attempt to plan,
manage, or improve. Measurement provides the only mechanism available for quantifying a set of
characteristics about a specific environment or for sc1

Increased understanding leads to better managemelit of software projects and improvements in the
software enginecing process. A software organization’s objective may be to understand the
status of the software engineering process or the implications of introducing a change. General
questions to be addressed might include the following:

in general.

How much are we spending on software development?

Where do wc allocate and use resources throughout the life cycle?

How much effort do we expend specifically on testing software?

0 What types of errors and changes are typical on our projects?

Figure 2-1 illustrates some more specific questions that may be of immediate concern to a
software manager.

SEL-94-002 6

Technology i s changing too fast.

Project results merely reflect the characteristics o f the people on the projects.

I don’t care about future projects; I care only about current results.

Each of these objections may have some merit; nevertheless, i t is essential to establish the baseline
before introducing change. Managers who have never collected data to confmn or challenge basic
assumptions about their environments may have inaccurate perceptions about the software
processes in use within their organizations.

Experience derived from many NASA p r o m s shows that an organization establishing a baseline
understanding of its software engineering pmcesw and products should concentrate on collecting
measurement data to reflect certain key software chsracteristics. Table 2-1 suggests sample
characteristics and refers to four examples that illustrate the points using actual NASA
experience.

Table2-1. sample sofhmrre m c t e d s t f ~ S

Understanding

What are the cost (resource)
characteristics of software in my
organization?

What are the error (reliability)
characteristics of software in my
organization?

How does my organization’s rate
of source code production (or
change) compare to previous
experience?

How does the amount of
software to be developed relate
to the duration of the prqect and
the effort required? What is the
relqtionship between estimated
software size and other key
parameters?

Distribution of effort among development
activities-am ount spent on design, d e .
test, or other activities
Typical cost per line of code
Cost of maintenance
Hours spent on documentation
Computer resources required
Amount of rework expected

Number and classes of errors found during
development or maintenance
How and when software de:ects are found
Number and classes of errors fcund in
specifications
Pass/fail rates for integration and system
testing

-

Typical rate of growth of source code during
development
Typical rate of change of source code during
development or maintenance
Total number of lines of code produced
Schedule as a function of software size
Cost as a function of size
Total number of pages of documentation
produced
Averaw. slaff size

NASA
Expetiencg

Example

4

Example

2

Example

3
~~

Example

4

SEL-94-002 8

Example 3:
Software Growth and Change Characte&ics

Insight into the rates of growth and change of source code also helps to build a better
understanding of software engineering processes. Code growth reflects the rate at which
source code is added to a controlled library; code change reflects modifications to the
controlled, or baselined, library. An understa.r,ding of the model for such rates can provide
a basis for dekmnining if a new project is progressing as expected or if it is producing or
changing source code at a rate that differs from the organization’s historical profile.

Figure 2-4 depicts the typical rate of growth of source code in a NASA environment. The
data were derived from over 20 software projects that followed a waterfall life cycle. This
information is used only to model typical projects in one particular environment, not to
determine the quality of a given process.

bsign
~ ldo -

90-

80-

70-

60-

5 0 -

40-

30-

20-

10 -
10 20 30 40 50 60 70 80 90 100

%of Schedule

NOTE: SLOC = Source hnes of Code

Figure 24. Growth Rate of Source Code

Figure 2-5 shows the accumulated changes to source code during the development phases
in the same environment. Both of the profiles shown here were derived from measurement
data that were inexpensive to collect and analyze, sod the resulting models are quite
stable.

1 1 SEL-94-002

9.00 W i n COdelTeSl YZ" I I
8.00 -
7.00 - 2 * 6.00 -

ii
5.00 -

5 4.00 -
m 3.00 -

LD
C m

- s! -
0 2.00 -

1.00 -
0.00

10 20 30 40 50 60 70 80 90 1

%ofscheduk?

NOTE: KSLOC = 1 .OOO Source Lines of code

fialnpki! 4:
Software Process Relationships

The functional relationships between product and process parameters provide additional
understanding of an organization's software engineering processes. This understanding
can be applied to the planning and management of subsequent projects in the same
environment.

Figure 2-6 presents examples of a few key relationships that were found useful in several
NASA environments. A SEL report (Reference 8) discusses those and other such
relationships and how they can be applied. The relationship constants are periodically
revised to reflect evolving organizational models. After the historical database has been
created, the additional effort required to develop such relationships has proved to be small
and worthwhile, leading to increased understanding of the software engineering process.

2.2 Measurement for Managing Software
The second key reason for establishing an effective measurement program is to provide improved
management information. Having an understanding of the software environment based on models
of the process and on relationships among the process and product paramcters allows for better
prediction of process results and more awareness of deviations from expected results. Thus,
understanding the software engineering process leads to better management decision making. The

SEL-94-002 12

Effort (in staff-months) = 1.48 (KSLOC)0.98

Duration (in months) = 4.6 (KSLOC)Oa

Pages of Documentation = 34.7 (KSLOC)0.93

Annual Maintenance Cost = 0.12 ’ (Development Cost)

Average Staff Size = 0.24 (E f f ~ r t) ~ . ~

Focus on applying results rather h n coUecting CgQta
L -

ffgum 2-6. Sampb Process Reladionships

understanding comes from analyzing local data: withoilt d y s i s , any data collection activity is a
waste of effort. The next step is to use the understanding that comes from the engineering models
to plan and manage software project activities.

A measurement program that focuses on the collection process, or that does not have a clear plan
for applying the acquired understanding, will fail.

Specifically, rhe knowledge gained about the software engineering process will be used to

Estimate project elements such as cost, schedules, and staffing profiles

Track project results against plannirig estimates

Validate the organizational models as the basis for improving future estimates

Engineering madels and relationships provide a foundation for the software engineering estimates
that form an important part of the projert management plan. Without accurate models based on
similar classes of software development and maintenance activities, project management success is
uncertain.

The next three sections address the use of models and relationships in more detail.

2.2.1 Planning land Estimating

One of the most critical responsibilities of a snfiware project manager is developing a software
project mmagenient plan, and one of the most important elements of that plan is a set of project
estmates for cost, schedule, staffing requirements, resource requirements, and risks.
Measurement results from similar completed projects are used to derive :oftware cngineering
models (providing an understanding of the environment), which, in turn, are used to develop the
estimates. The quality of the information in the historical databas;: directly affects the quality of
the softwm engineering models and, subsequently, the quality of the planning estimates for new
projects.

;3 SEL-94-002

A manager who can produce a product size estimate based on software functionality requirements
can *en derive such estimdtes as cost and schedule using organizational models and relationships.
The standard size estimates within the SEL are currently hased on developed lines of code
(DLOC). (For a detailed discussion of DLOC-software size with a weighting factor applied to
reused code-see Reference 9 and Sections 4.5.2 and 6.1.2 of this document.) Given a product
size estimate and the distribution percentages shown in Table 2-2 (Reference IO), a manager can
derive project cost (measured as staff effort) and schedule estimates using the relationships

Effort (in hours) = DLOC / Productivity

Time
Schedule

(%I

where

Completion Staff-
Milestones Months

Effort (Months by (Allocated
Phase) by Phase)

Productivity = 3.2 DLOC per Hour

35
30
35

for FORTRAN, and

30 8.4 60

40 7.2 80

30 8.4 60

Duration (in montiis) = 4.9 (Effort [in ~taff-months])~.~

for attitude ground support systems (AGSSs).

For example, assuming an estimated product size of 99,OOO DLOC for an AGSS to be developed
in FORTRAN, a total effort of approximately 200 staff-months and a total duration of
approximately 24 calendar months can be estimated. The table also provides derived project
estimates for the cost and duration of each major life-cycle phase. In this model, the design phase
comprises requirements analysis, preliminary design, and detailed design, and the test phase
encompasses both system and acceptance test. Initial planning estimates may have to be adjusted
for changes in requirements or schedule. It is also important to note that the specific parameters in
the relationships shown here are highly dependent on environmental factors, such as the local
definition of a line of code. Although anyone can use this model as a s w n g point, each
organization must analyze its data to derive its own distribution model.

Table 2-2. Distribution of lime Schedule and Effort Over Phases

Life-
Cycle

PhaSeS

Design

Code

Test

I

Distribution Model Sample Derived Estimates
(Reference 10)

SEL-94-002 14

2.2.2 Tracking

An important responsibility of software project management is tracking the actual size, effort,
budget, and schedule against the estimates in the approved plan. Successful, effective management
requires visibility into the progress and general status of the ongoing project, so that timely and
informed adjustments can be made to schedules, budgets, and processes. Periodic sampling of
project measurement data provides that visibility.

The extent and effectiveness of the project tracking process depends on the availability and quality
of a set of historical models and relationships. If the only available model is related to cost data,
then management tracking will be limited to cost information. However, a more extensive set of
derived models for staff size, software growth rate, software change rate, error rate, and other
parameters will facilitate a broader tracking capability.

Figure 2-7 illustrates the process of tracking the actual software growth rate3 against the planning
estimates. In this illustration, the planned growth estimates are based on the model introduced in
Figure 2-4. A deviation of the actual values from the expected curve indicates simply that
something is different from the historical model. Such a deviation does not necessarily signal a
problem; rather, it can provide the program manager with an opportunity to explain the
difference. In particular, the deviation may have resulted from a planned improvement. For
example, a project that is reusing a larger amount of code than the typical past project may show
a sharp jump in growth rate when reused code is moved into the controlled library.

1 do

90

80

70

60

50

40

30

20

10

10 20 30 40 50 80 7s 80 90 100

% of Schedule

Figurn 2-7. Tmcking Growth Rate

Software growth rate reflects the rate at which programmers complete the unit testing of source code. In Figure
2-7, the acruul percentage of Lje totill is computed with respect to the estimated s ize at completion.

IS SEL-94-02

2.2.3 Validating

Once a manager has the ability to track actual project measures against planning estimates, he or
she can begin to use any observed differences to evaluate the status of the project and to support
decisions to take corrective actions. Figure 2-7 also shows an allowable range of deviation around
the planned or expected values on the growth curve. Observing the trend of the actual growth rate
relative to the planned values can provide a management indicator of a healthy projec'i (as
determined by a growth pattern within the expected range) or a potential problem that q u i r e s
%rther evaluation to determine the cause (as is the case in Figure 2-7). With the insight gained by
observing the trend, a manager can adjust staffing or xhedule to get the project back on track.

Although it is obvious that an actual value below the allowable range may indicate a cailse for
concern, it is perhaps less obvious that an actual value that falls above the allowable range should
also generate a management investigation. In this example, a software growth rate above the
allowable range may indicate that some other project activities are not being performed or,
perhaps, that the wrong model was used for planning and estimation. Consistent ana regular
deviations may also indicate a need to adjust the organization's models.

Examples within this section have illustrated that a baseline anderstanding of the software
engineering process derived from historical results provides the essential model, which leads to
the planning estimate, which makes the tracking possible. The process of tracking actual versus
planned growth values provides the insight for validation, which facilitates adjustments by project
management. The fundamental elcment of measurement support for project management is
understanding the software engineering process.

2.3 Measurement for Guiding Improvement
The primary focus of any software engineering organization is to produce a high-quality product
within schedule and budget. However, a constant goal, if the organization is to evolve and grow,
must be continual improvement in the quality of its products and services. Product improvement
is typically achieved by improving the processes used to develop the product. Process
improvement, which requires introducing change, may be accomplished by m-ing
management or technical processes or by adopting new technologies. Adoption of a new
technology may require changing an existing process. In any case, software measurement is a key
part of any process improvement program; knowing the quality of the product developed using
both the initial and the changed process is necessary to assert that improvement has occurred.

There are seve,ral popular paradigms for software process improvement. For example, the
Capability Maturity Model (CMM) for Software (Reference 11). produced by the Software
Engineering Institute (SEI) at Carnegie Mellon University, is a widely accepted benchmark for
software engineering excellence. It provides a framework for grouping key software practices into
five levels of maturity. A maturity level is an evolutionary plateau on the path toward becoming a
mature software organization. The five-level model, represented in Figure 2-8, provides a defined
sequence of steps for gradual improvement and prioritizes the actions for improving software
practices.

SEL-94-002 16

Continually
Improving Process

Predictable proWESc
M n e d
3 Consistent Process

Disciplined
Process

Initial
1

Managed
4

Figure 2-8. The Five Maturity Levels of the CMM

The SEI provides the following characterization of the five levels:

1.

2.

3.

4.

5.

Initid-The software process is characterized as ad hoc and, occasionally, even chaotic.
Few processes are defined, and success depends on the efforts of individuals.

Repeatable-Basic project management processes are established to track cost, schedule,
and functionality. The necessary process discipline is in place to repeat earlier successes on
projects with similar applications.

Defined-The software process for both management and engineering activities is
documented, standardized, and integrated into an organization-wide software process. All
projects use a documented and approved version of the organization’s process for
developing and maintaining softwdm.

Managed-Detailed measures of the software process and product quaiity are collected.
Both the software process and products are quantitatively understood and controlled using
detailed measures.

Uptimiting-Continuous process improvement is enabled by quantitative feedback from
the process and from testing innovative ideas and technologies.

The CMM is an organization-independent model that emphasizes improving processes to reach a
higher maturity level when compared to a common benchmark. Such a model presupposes that
the application of more mature processes will result in a higher quality product. In contrast, the
SEL has introduced a process improvement paradigm for NASA fith specific emphasis on

17 SEL-94-002

producing a better product based on the individual goals of the organization. Figure 2-9 illustrates
the SEL’s UnderstandAssesdPackage paradigm.

In the SEI model, a baseline assessment of an orgarization’s deficiencies, with respect to the key
processes defined at each of the maturity levels, determines the priority with which the
organization implements process improvements. In the S5L model, thc specific experiences and
goals of the organization drive changes. (See Reference 12 for a more dctailed comparison of the
two paradigms.)

Define, redefine, and tailor
processes and models on the basis of
new experiences

/ / I Identify changes
Set goals
Choose processes and experiment
Execute processes
Analyze dah and determine impact

Establish baselines
Extract and define processes
Build mcldels

Time

Figure 2-9. The UnderstandcAsseMackage Paradigm

2.3.1 Understanding

Section 2.1 introduced understanding as the primary reason for establishing a measurement
program; that same understanding prov;des the foundption for NASA’s process improvement
paradigm. To provide the measurement ba is for its software engineering process improvement
program, an organization must begin with a baseline understanding of the current processes and
products by analyzing project data to derive (1) models of the software engineering processes and
(2) relationships among the process and product parameters in h e organization’s environment.

As the organization’s personnel use the models and relationships to plan and manage additional
projects, they should observe trends, identify improvement opportunities, and evaluate those
opportunities for potential payback to the organization. As improvements are implemented, new
project measurement results are used to update the organization’s models and relationships. These
updated models and relationships improve estimates for future projects.

SEL-94-002 18

Improvement plans must be made in the context of the organization’s goals. Improvement can be
defined only within the 4omain of the organization-there are no universal meawes of
improvement. An organizatio,: may base its process improvement goals on productivity, cost,
reliability, error rate, cycle time, portability, reusability, customer satisfaction, or other relevant
characteristics; however, each organization must de t edne what is most important in its local
environment. Using measurement as the basis for improvement permits an organization to set
specific quantitative goals. For example, rather than simply striving to reduce the error rate, an
organization can establish a goal of lowering the error rate by 50 percent. Determining the effect
of introducing change q u i r e s initial measurement of the baseline.

2.3.2 Assessing

Once an organization understands the current mcckls and relationships reflecting its software
process and p d u c t , it may want to assess the impact of introducing a process change. It should
‘be aoted that a change is not necessarily an imprwenlent. Detenl-hing that a change is an
improvement req,ires analysis of measures based on the organization’s goals. For example,
assume that an organizatiorh’s goal is to decrease the error rate in delivered software while
maintaining (or possibly improving) the level of productivity; further assume that the organization
has decided to change the process by introducing the Cleanroom method (Reference 13).
Cleanroom focuses on achieving higher reliability (Le.’ lower error rates) through defect
prevention. Be:ause the organization’s primary goal is to reduce the error rate, there is no
concern that the Cleanroom method does not address reuse, portability, main&nabiility, or many
other process and product characteristics.

During a recent study (Reference 14). the SFL assessed ihe impact of introducing the Cleanroom
method. Table 2-3 shows the error rate and productivity measures for the baseline and the first
Cleanroom project. The results of the experiment appear to provide preliminary evidence of the
expected imprwement in reliability following introduction of the Cleanroom metho3 and may also
indicate an improvement in productivity. Chapter 6 provides additional details of the SEL
Cleanroom study.

T8bk 2-3. Impact of dhe Cleanroom Method on Reliabilty end Productivity

I I 4.3 40

19 SEX-94-002

2.3.3 Packaging

NASA experience has shown that feedback and packaging of measured results must occur soon
afkr completion of an impact assessment. Packaging typically includes written policies,
procedures, standards, and guidebooks. Highquality training material and training courses are
also essential pans of the packages.

For example, to incorporate the Cleanroom method as an integral part of its software develop
ment activities, an organizaticn must first prepare the necessary documentation and provide
training to all affected project personnel. Packaging is discussed in more detail in Chapter 5.

SEL-94-002 20

Chapter 3. Establishing a Measurement Program

SELECTING MEASURES

21 SEL-WM)2

A fter an organization understands the roles that measurement can play in software
engineering activities, it is ready to establish a measurement program. The effective
application of information derived from measurement entails building models, identifying

the strengths and weaknesses of a particular process, and aiding the management decision
process. A clear, Well-defined approach for the applicaticn and analysis of measurement
information will minimize the cost and disruption to the software orgmkation. Building on the
advice of the preceding chapter, th is chapter addresses the fo1lowir.g topics and provides
recommendations for successfully establishing a new measurement program:

0 Understanding the organization's goals

0 Defining the scope of the measurement program

0 Defining roles and responsibilities within the organization

0 Selecting the appropriate measufes

0 Controlling the cost of measurement

3.1 Goals
First, the organization must determine what it wants tG accomplish through measurement This
requirement leads to the next rule:

Und@rs&thegoalS.

The goals of an organizr 'ion may be to increase prodiictivity or quality. reduce costs, improve the
ability to stay on schedule, or improve a manager's abiity to make informed decisions. Typically,
an organization that is implementing a measurement program has all of these goals. Although it is
admirable to want to improve everything immediately, establishing priorities for achieving the
goals incrementally is essential. After clarifying the organizational goals, the organization must
recognize the need to establish a mesurement program to achieve its goals.

I 1

Understundhow to apply measuremerst.

If the goal is to improve productivity, for example, then the organization must know its current
productivity rate and undersmd its product and process characteristics. Both prerequisites are
supplied by measurement.

The resuits of a measurement program will be used in different ways at each level of the
organization. Senior management will be interested primarily in how the program improves the
capabilities and productivity of the organization and in the effect on the bottom line. Project
managers will be concerned with the impact on planning and managing current project efforts.
Software developers will be interesied in how the program wil! make work easier compared with

sEL-1)4-002 22

the impact of data collection requirements. Successful measurement pmgrams begin by involving
dl participants in defining the goals.

Because personnel at different organizational levels will view a new measurement program from
different perspectives, the success of the prognm demands that those responsible for introducing
measurement follow the next rule:

I Set expectations.

The implementation of a measurement program will inevitably introduce change; change will bring
some resistance arid some initial problems. To minimize resistance, both management and
technical personnel must be prepared to expect and accept the change and to encourage others to
be persistcn’c and patient. Proper setting of expectations will enhance potential support and
acceptance from all management and technical personnel affected Oy the changes.

F h to achieve sn early success. i
The first project should be selected carefully with the objective of demonstrating evidence of early
benefits. Measurement programs sometimes fail because well-intentioned measurement
coordinators wait too long “for all the results to come in” before reporting progress to senior
management. It is critical to report pliminary results as won as possible after establishing the
program. The startup investment is significant, so management must see an early return on that
investment, or the program is likely to be canceled before measurement analysts can provide “all
the results.” Equally important, project personnel need to see evidence of the benefits of their
efforts to reduce their inevitable resistance. The early payoff may be, for example, a better
understanding of the typical classes of errors that are detected m the organization’s software
projects or an understanding of the relative amounts of time that personnel spend in coding as
compared with testing.

Although early feedback is essential for success, it is prudent not to promise substantial
improvement during the early phases of the program. Worthwhile analysis, synthesis, and
packaging take t h e and effort. Development and maintenance teams must be conditioned to
expect gradual, incremental improvements.

3.2 Scope
A.%r the goals of the measmment program are established and understood, measurement
personnel must define the scope of the program, making the following critical decisions:

0 Which projects should be included in the organization’s measurement program?

0 Which phases of the software life cycle should be included?

23 SEL-94-002

Which elements of the project staff should be incluM, for example, is it important to
include the effort of secretarial support, publication support, and two or more !evels of
management?

Those responsible for making these decisions must consider both the previously defined _oals and
the need to gain acceptance from project persolinel who will be affected by the new rmx.wrement
program. The next two rules provide help in defining the scope.

The scope of the measurement program should be limited to the local organization.
Organizational gods should have been based on the need for specific self-improvements, not for
making compariscm with others. When defining processes for data collection and analysis, it is
important to use concepts and terms that are understood locally. Precious effort should not be
expended developing universal or unnecessarily broad-based definitions of measurement concepts
and standards. Similarly, it is important to focus on developing a highquality local measurement
data center. Combining local measurement data into larger information centers has never proved
beneficial and has consumed significant amounts of effort. Consultation with management and
software personnel can ensure proper focus and increase acceptance.

startsmau.

When establishing a measurement program. it is always important to start with a smaU scope.
Limiting the number of projects, resmcting the portions of the software life cycle to those with
already welldefined processes within the organization, and limiting staff involvement to essential
personnel will all help to minimiZe resistance from, and impact on, managers and dcvelopment or
maintenance personnel. The scope of the program will evolve. but the time to increase the size of
the program is afrer it has become successful.

3.3 Roles, Responsibilities, and Structure
After the organizational goals are well understood and the scope of the measuRment program is
defined, the next step is tq define roles and responsibilities. In a successful measurement program,
three distinct roles must be performed by components of the organization:

1. The source of data-providing measur:ment data fiom ongoing software development
and maintenance activities

2. Analysis and packaging-examining measurement data and deriving process models and
relationships

3. Technical supr ;-r-collecting, storing, and retrieving project information

Figure 3-1 illustrates the components and the relationships among them. Each component must
perform its distinct role while maintaining a close relationship with the other two components.

SEL-94-002 24

i
!

I
!
i
!
j

I

1 1

I
I
i
!
!

saufc8ofData
4 PlwidsabJectiveinformation

Provide subjectrve infom\ahon
Attend training
Produceressons-leamede-
Use provtded processes and models

c

madeis..

~ a k r t a i n tfie ~nformat~on ~epository 1
1, -

Technkal Support
0 write data c d l m procedures

EStablLSh database structure
QA and feed back data
Archwe data and documents

Urderstand
Assess and Refine

Analysis and Packaging
0 Anatyzeexperiwrces

Deveiop modek and relafianships
Produce standards and training
Pmvtde feedback

The next sections introduce the components' responsibilities in starting a msurement program
and map the components into the organizational structure. (Chapter 5 briefly describes the
operational responsibilities of the three component>.)

3.3.1 The Source ut Data

The responsibility of the development and mainrenance component is to provide project data.
hv id ing data is die onfy responsibility imposed on the development and maintenance personnel;

25 SEL-94-002

they are not responsible for analyzing the data. These personnel can reasonably expect to be
provided with training that includes, at a minimum, the following information:

Clear descriptions of all data to be provided

Clear and precise definitions of all terms

0 Who is responsible for providing which data

When and to whom the data are to be provided

In exchange, the development and maintenance component of the measurement program receives
tailored processes, refined process models, experience-based policies aid standards, and tools.

Organize the analysts separateryfiom the developers. -

3.3.2 Analysis and Packaging

The analysis and packaging component is responsible for developing and delivering the training
that will provide the developers and maintainers with the specific information listed in the
previous section. Analysis and packaging personnel must design and develop the data forms and
receive the raw data from the repository. They are responsible for examining project data;
producing tailored development and maintenance processes for the specific project domain;
generating organization-specific policies and standards; and generalizing lessons, information, and
process model.. This measurement program component continually receives data from the
developers snd maintainers of software and, in return, continually provides organization-specific
experience pdckages such as local standards, guidebooks, and models.

The analysis and packaging personnel are necessarily separate from the development and
maintenance personnel because their objectives are significantly different. Measurement analysts
are concerned solely with improving the software process. Software developers’ and maintainers’
concerns include product generation, schedules, and costs. It is impractical to expect personnel
who must delivyr a highquality product on schedule and within budget to be responsible for the
activities necessary to sustain continual improvement; hence, those functions must be the
responsibility of a separate component.

3.3.3 Technical Support

The technical support component maintains the information repository, which contains the
organization’s historical database. This component provides essential support services including
implementing the database as specified by the analysis and packaging component. The support
personnel collect data forms from the developers and maintainers on a prescribed schedule,
perform data validation and verification operations to idenbfy and :eport discrepancies, and add
the project data to the historical database. They are also responsible for operating supplementary
software tools (e.p;., code analyzers) and for preparing reports of thc analysis results. In addition,

SEL-94-002 26

the support personnel archive data and perform all other database management system (DBMS)
maintenance functions.

Example:
The Sofiware Engineering Laboratory

Although their measurement roles and responsibilities are clearly distinct, the three
components may be organized in different ways within different organizations. A large
organization may benefit by creating separate, structural components to perform the three
distinct roles of the measurement program. A small organization with a small project may
simply assign the roles to individual personnel. In some cases, a single individual may
perform multiple roles as long as the amount of effort allocated to separate roles is clearly
identified.

Far example, the SEL is an organization of moderate size with approximately 300
softwwe developers and maintainers. The organization develops and maintains mission
support software f.-; the Flight Dynamics Division at GSFC. Since 1976, the SEL has
collected data from more than 100 software development projects. Typical projects range
in size from 35,000 to 300,000 SLOC and require from 3 to 60 sraff-years of effort. The
process and product data have been analyzed to evaluate the impact of introducing
methodologies, tools, and technologies within the local environment. In recent years, the
SEL has expanded the scope of its activities to include the study of sohare maintenance
(Reference 15). Process improvements, introduced as a result of continual measurement
activities within the SEL, have led to documented improvements in the organization’s
products.

Figure 3-2 illustrates the organizational structure of the SEL. In this example, the
technical support personnel who maintain the repository are administratively affiliated with
the analysis and packaging component but physically located with the source of data. This
structure works well in the SEL for two reasons:

1. Administratively, the required support personnel receive funding from the same
source as the analysis and packaging personnel. Developers and maintainers are
funded by a different source.

2. The physical environment is structured with the forms processing, database host
computing support, and library facilities collocated with the developers and
maintainers, so the support personnel occupy that same space.

Many alternative structures would be just as functional and successful. The important
feature is that the development and maintenance personnel are not responsible for analysis
and packaghg. In addition, SEL models and relationships are affected by the fact that the
measurement program within this sample environment is limited to development and
maintenance of operational mission support software! Organizations that include other
activities may derive significantly different models. Issues related to the cost

4Although the scope of the measurement program includes no data from prototype development or research
activities, the software personnel do perform such activities as a part of their jobs.

27 SEL-94-002

des
additional examples and details.

3.4 Selecting the Me
Another important step in establishing a measurement program i s selecting the masum to be
used. Selected measures will fall into one or mote categories, including objective measures (direct
ounts, obtained either manually or with the support of an automated toof), subjective measures

(interpretive assessments about the status of the quality or completion of the product), and project
characteristics (factual descriptions of the type, size, and duration of the project). Chapter 4
addresses measures in more detail. When selecting measures, the next mle is &e most important:

Measures should not be selected just because a pcblished author has found them useful; they
should directly relate to the defined goals of the organization. For example, if there is no goal to
reduce processor time, it is a waste of time and effort to collect data on computer usage.

Keep the number of measures to a minimum.

Experiences from successful measurement programs within NASA suggest that a minimal set of
measutes is usually adequate for beginning a program and sufficient to fulfill all but the most
ambitious goals. A basic set of measures-which typically consists of data for schedule, staffing,
and software size-is introduced in the next chapter.

This rule-to limit the number of measures and, by implication, the size of the measurement
database-is a corollary of the rule to start small, which suggests limiting the scope of the
measurement pmgram itself. The rule should be taken literally: if a single measure is sufficient to
address the organization's goal, then collecting data on two or three will provide no added
benefits. For example, if the only goal is to improve quality, only defects should be measured; cost
and schedule data should not be a concern.

J Avoid over-reporting measurement Antrr.

Any measurement program can be potentially disruptive to a software project; therefore, analysts
must be cautious when providing feedback to development and maintenance personnel. Providing
too much feedback can be just as serious a mistake as providing not enough. Reporting the results
of analyzing all available measurement data is a waste of time, because much of the information
will provide no additional insight. When presented with unnecessary and exccssive charts, tables,
and reports, software staff and managers may become annoyed and disenchanted with the value of
the measurement program.

Collected data constitute only a small part of the overall improvement program and should alv. ays
'5e treated as the means to a larger end. The tendency to assume that each set of data has some
inherent value to the development and maintenance personr;lel and, therefore, should be analyzed,
packaged, and fed back to them, must be avoided. Feedback must be driven by a n d or rlirected
toward supporting a defined goal. If no focus has been established for the analysis of code
complexity, for example, then here will be no value in-and no appreciation for-the preparation
of a complexity report. Such a report would be disruptive and confusing and could dilute the
effectiveness of the measurement program.

The following common reports and graphs are often packaged and provided to the development
and maintenance organization, not because they are needed, but simply because the data exist:

Code complexity

Design complexity

e Number of tests executed

29 SEL-94-002

0 Plots of computer usage

0 Charts of numbers of requirements changes

0 Profiles of program execution

0 Charts of the time spent in meetings

Each of those measures may have some value when used in support of an organizational goal.
However, this type of information is too often reported because it is assumed to be inhetently
interesting, not because it relates to a particular need or goal.

3.5 Cost of Measurement
Cost is one of the most critical, yet misunderstood, attributes of a software measurement
program. Many organizations assume that the cost of measurement is so excessive that they
cannot justify establishing a measurement program. Others claim that measurement can be a
nonintrusive, no-cost addition to an organization and will have no impact on the organization’s
overhead. The truth lies somewhere in between.

Budget for the cost of the measurement program.

Measurement is not free, but it can be tailored in size and cost to fit the goals and budgets of any
software organization. A measurement program must be undertaken with the expectation that the
return will be worth the investment. If the cost is not planned in the organization’s budget, there
will be frustrations, attempts at shortcuts, and a failed software measurement program. Planning
must incorporate all of the hidden elements of the proposed effort-elements that are often more
expensive during startup than after the measurement program becomes operational. The higher
startup cost is an additional reason to sfart small.

Planners often incorrectly assume that the highest cost will be to the software development or
mainienance organization. This part of the overhead expense, which includes completing forms,
idenwng project characteristics, and meeting with analysts, is actually the least expensive of the
three major cost elements of the measurement program:

1. Cost to the software projects (development and maintenance overhead)

2. Cost of QA and of storing and archiving data (technical support overhead)

3. Cost of analyzing and packaging (measur application overhead)

The cost of the measurement program also depends on the following considerations of scope:

0 Size of the organization

0 Number of projects included in the measurement program

0 Extent of the measurement program (parts of the life cycle, number of measures, etc.)

SEL-94-002 30

NASA experience shows that there is a minimum cost associated with establishing and operating
any effective measurement program. The total cost will increase depending on the extent to which
the organization wants, or can afford, to expand the program to address additional projects, more
comprehensive studies, and broader measurement applications.

The cost information offered in this section is based on 17 years of experience from organizations
ranging in size from approximately 100 to 500 persons. Additional information has been derived
fiom measurement programs in larger organizations of up to 5,000 persons. The number of
projects active at any one time for this experience base has ranged from a low of 5 or 6 projects to
a high of over 20 projects, ranging in size from 5 KSLOC to over one million SLOC. Because
.rleasurement costs depend on a large number of parameters, citing a single definitive value that
rcprwcnts the cost of any organization's measurement program is impossible. However, some
general suggestions can be provided, and organizations can interpret these suggestions in the
context of their own goals and environments.

Generally, the cost of measurement to the development or maintenance project will not exceed
2 percent of the total project development cost and is more likely to be less than 1 percent (which
implies that the cost may be too small to be measured). The technical support element may reach
a constant staff level of from one to five full-time personnel for daia processing support. The
analysis and packaging element will require several full-time analysts and may cost up to
15 percent of the total development budget. For example, the SEL spends an average of about
7 percent of each project's total development budget on analysis and packaging.

Figure 3-3 illustrates the costs of the elements of a software measurement program as percentages
of the total organizational cost. Individual costs are discussed in more detail in the following
sections.

Devebp models
(Pro-==)
Analyze results

Mi6Slze Organizations
(Apprcximamly 100-500 Persms)

3

Archwe results
Maintain

* Q A
database

-
Fill out forms
Provkle data

aoh 3-Ph

Train staff
Define
expe erne nts

-

6 1 5%
"

prolm Data Processing Analysis/
Overhead cost Application

0
.Y
v)
= 2 P
m
Y
C m

&

5 -
m
0 1

f
t
0

0 -

Large Organizations
(Approximataly 5W-5,OOO Persons)

1&15 people

Prqect DataProcessing Anatysld
Overbead cost Application

Figure 3-3. Cost of Software Measurement

31 SEL-94-002

3.5.1 Cost to Development and Maintenance Component

The cost of measurement should not add more than 2 percent
to the software development or maintenance effort.

The smallest part of the measurement cost is the overhead to the development and maintenance
organization. This overhead comprises the cost of completirg forms, participating in interviews,
attending training sessions describing measurement or technology experiments, and helping to
characterize project development. Although startup costs may be as high as 5 percent of the
development budget, the cost of operating an effective program will normally not exceed 1 or 2
percent, regardless of the number of active projects within the organization.

Legitimate costs are associated with introducing the providers of data to a new measurement
program. However, part of the higher initial cost can often be attributed to the inefficiencies in an
inexperienced organization’s program. New programs typically ask developers or maintainers to
complete unnecessary forms or require excruciating detail that is of little value or is not a part of
the stated goal. A well-planned measurement program will never impose a significant cost impact
on the development or maintenance organization.

3.5.2 Cost of Data Processing

The data processing element of the measurement program may
cost from 3 to 7 percent of the total development budget.

The technical support (i.e., data processing) element of the measurement program encompasses
collecting, va!idating, and archiving the measurement data. Included in these activities are
database management, library maintenance, execution of support tools, and high-level reporting of
summary measurement data. These essential activities must be planned, supported, and carefully
executed. In addition to the cost of personnel are the costs of acquiring and maintaining database
software, support tools, and other automated processing aids (e.g., code analyzers).

In an organization of over 50 management, technical, and clerical personnel, any measurement
program will require three to five full-time staff members to handle the necessary support tasks. A
smaller organization, with perhaps only one project and a pilot measurement program, may wish
to combine the data processing effort with configuration management (CM) or independent QA
activities. Implementation of a separate data processing support element may not be cost
effective.

Experience within NASA has shown that the cost of the data processing tasks for measurement
programs involving 100 to 200 software developers or maintainers is approximately 7 percent of
the total effort. That cost includes approximately five full-time data technicians and database
support personnel, plus the costs of the DBMS and associated software tools and equipment. For
larger measuremerlt programs with 250 to 600 software personnel, experience indicates that only
one additional full-time support person is required. Thus, for organizations with 50 to 600
de,elopers and maintainers, the overhead cost is approximately 6 percent of the projv! c x t . For
organizations with approximately 500 to 1 ,OOO software personnel, the overhead cost approaches
3 percent of the project cost or about seven full-time personnel added to the cost of tools and
equipment.

SEL-94-002 32

The cost estimates are based on the assumption that an organization is actively working on 5 to
15 development or maintenance projects at an] one time. The overall cost of the data processing
element will vary significantly depending on the number of projects participating in the
measwment program. An organization of 200 or 300 people actively wmking on a single large
project will q u i r e much less support than the same organization with 20 active smaller projects.
Limited experience with larger organizations of over 5,000 persons indicates that the data
pmcesing support cost is escsmially the same as for an organization of 500. As its size increases,
an organization tends to collect measurement daia at a less detailed level.

3.5.3 Cost of Analysis and Packaging

The cost of the analysis element of the measurement prcrgram
ranges from 5 to 15 percent of the total project budget.

Analysis and packaging is the most critical part of the measurement program and the most costly
of the three elements of cost overhead. Without a sufficient allocation of effort to this function,
the measufement program cannot be a success.

F h to spend at least three fimes as much on data analysis d use
as on datu C Q & C ~ ~ O ~ .

Packaging is !he culmination of al l measurement activities and the primary purpose for the
masmment program.

Key activities associated with this element are

&sign of proccss studies (determining what is to be measured)

aformation analysis (e.g., analysis of data ana synthesis of mdels)

Project interaction (clarifying the purposes of measurement, training developers, providing
feedback to projects)

Packaging (producing standards, policies, anrf training p ~ r j ~ g m s and capturing

NASA experience shows that the cost of this element in successful measurement programs far
ex& the combined costs of the other two. A successful measurement program dictates that
this cost be recogaized and budgeted. For measurement programs involving 50 !a 250 software
developers or maintainers, the cost of this activity has consistently run from approximately 7 to 12
percent of the organization's total budget. Costs are incurred by the researchers who design
studies and de=.elop new concept$, by the process staff responsible for developing and writing
standards, and by all the personnel required for analyzing, providing feedback, and developing
improvement guidelines. The analysis and packaging portion of the measurement costs depends
on the number of projects active within the organization. The figu-es provided here assume at
least 10 active projects and an archive of data fmm at least 15 projects available for analysis. With
fewer active projects. the analysis overhead would be smaller than indicated.

assessments of analyzed processes)

33 SEL-94-002

NASA’s historical data indicate that organizations spending between $20 million and $30 million
for development and maintenance projects have spent between $1 million and $3 million for
extensive and mature analysis efforts (in fiscal year 1993 dollars). For efforts Oli a much larger
scale, the measurement analysis must necessarily be conducted on a comparably higher level;
consequently, the overhead percentage decreases significantly. An expenditure of an equivalent
amount of analysis resources, plus a modest increase due to the size of the organization, need not
exceed the 5 percent level for measurement programs of any size. Because application of the
measurement data is the primary reason for the measurement program, adequate resources must
be allocated for this critical measurement program element.

SEX-94-002 34

T his chapter describes a set of core measures that any organization can use to begin a
measurement program. There is KO unived , generally applicable collection of measures
that will satisfy the needs and characteristics of all organizations. However, on the basis

of the experiences of mature measurement programs throughout NASA, a set of measures in the
following five categories will typically be required by any software development and maintenance
organization:

1. cost

3. Process characteristics

4. Projectdynamics

5. Project c-ristic~

Although organizations beginning a measufement program may want to use the core set as a
baseline, they will soon find that additional infomation is required to satisfy their specific goals
and that some of the core measures are not required. Each organization should use those
measures that reflect its own goals. As its rneasuremt pgram matures, the organization will
recognk which measures support those goals and which provide no added value.

The recommended core measures in each of the categories exhibit the following important
amibvtes. They

0 Address the three key reasons for measurement

1. Understanding

2. Managing

3. Guiding improvement

0 Support both software development and software maintenance activities

Are easy to collect and archive

Ar: based on the experience of mature NASA measurement programs

The following Sections provide further infomation on the core measures.

4.1 Cost
Cost is the mo-t universal and commonly accepted measure for understanding and managing
software processes and products. Consequently, cost data represent the most essential part of any
measwment propam. Althmgh m : y development organizations assume that the cost data must
'be extensive and detailed to capture the overall cost characteristics of a software project
adequately, the cost data should actually be easy to capture. If a programmer needs more thar. a

much data. As long as the managers are aware of the total amount of effort required for the
software projects, an organization can gain a significant amount of insight by ohserving the wends

few minutes each week (on the average) to record his or her effort, then the forms q U ; a r e too

SEL-94-002 36

over time. The simplest, yet most critical, cost measure is the record of the total expenditures for
a project.

4.1.1 Description

Every project must capture staff effort data on a consistent, periodic basis. A monthly schedule is
recommended, at a minimum; however, many major NASA measurement programs capture effort
data biweekly or even weekly. The higher f q u e n c y requires little additional work and provides
m r e project characterization detail.

The scope of the effort data collection depends on the organization's goals. Each organization
must determine precisely who will supply effort data, at what point during the software life cycle
measurement will begin, and when data collection wiU terminate. Typically, effort data must be
collected for all personnel who charge their time to the software project, specifically, technical,
management, secretarial, and publications staff.

For every data reporting period, each individual must mhimally report the total number of hours
of effort and a breakout of the number of hours per activity (e.g., design, code, test. or other).

A decision concerning the reporting of unpaid extra hours of effort must be based on whether the
intent is to measure the actual effort expended or the actual effort charged. Some organizations
maintain separate records of ucpaid overhead hours.

Within the SEL, every programmer and every first- or second-line manager provide effort data.
Data collection starts when the functional requirements have been completed and the software
requirements analysis phase begins. For development projects, data collection continues until the
system is turned over for operational use. For muintemnce projects, data collection starts at the
beginning of the operations phase and continues until the analysts determine that no additional
value w.ll be gained from further collection. Each maintermce p j e c t is judged on its own merits.
Some may provide data for 1 year only, whereas others provide data until the software is retired.

4.1.2 Data Definition

When the measurement pmgram is first established, personnel from the analysis component must
define the activities to ensure clarity and intemal consistency. Focus should be on using locally
developed definitions for the activities. Excessive time should not be spent trying to be consistent
with outside organizations.

37 SEL-94-002

All project personnel (e.g.. pmgrarnmers, managers, QA staff, CM staff, and testers) provide the
data listed in Table 4- 1. Additional resource data on the documentation effort (total hours by
publications) and the clerical effort (total hours charged by secretarial support) may be extracted
from project management accounting records, as long as there is a definition of scope and
characteristics. The data must be consistent from project to project and should provide an
accurate history of the cost required to produce and to maintain the software product.

&ita m p t i o n s

Total eofort I Totalhourschargedtotheprojectduringthatperiod

Redesign
crfstedesign
Readandreviewdesign
Write code
Readandreviewcode
Test code units
oekrgging
Integration test
Acceptance test
Other

Hwrs by maintemnce Clsss

Hours by maintenam3 actMty

correction
Enhancement
Adaptation
Other

Isolation
changedesign
Implementation
Unit test and system test
Acceptance test and benchmark test
Other

The SEL Personnel Resources Foms (see Figures A-5 and A 4 in Appendix A) and the Weekly
Maintenance Effort Form (see Figure Fa- 13) are examples of foms used to capture effort data for
development and maintenance projects, respectively. Programmers and managers typically
complete a form every week. Both fonns provide space for recording total hours and the
distribution of hours by activities. To reduce questions and confusion, the definitions of the
activities are supplied on the forms. Other organizations may use different definitions as long L
they are applier, consistently throughout the organization’s measiiment program.

SEL-94-00? 38

Figure 4-1 summarizes the lifecycle phases, wirces, and frequency for cost data collection.
Typicdly, organizations separate the costs of development and maintenance activities.

I I

4.2 Errors
Error data make up the secoild most important category of core measures. A better understanding
of the characteristics of software defects is necessary to support a goal of higher quality and
greater reliability. Error data may minimally include only counts of &fects detected during a
specific lifecycle phase; at the other extreme, error data niiy include detailed descriptions of the
characteristics of the errors and information on where the errors came from, how they were
found, and how they were corrected. The level of detail must be driven by the goals and needs of
the particular organization. This section recommends core error measures based on those
collected within a successful measurement ;nogram in a medium-sized NASA organization.

49.1 Description

The core measures consist of the

Date the error was found

0 Date the error was c o m t e d

0 Effort rcquired to isolate and correct the error

Source of the error

Errorclass

When the measurement program is first established, the measurement analysts must define the
scope of the error reporting activity.

Error data should be captured only after a unit of software has been placed under configuration
management control. This recommendation, which is based on 17 years of experience, may seem
counterintuitive. However, until CM checkout and checkin procedures have been established as
prerequisites for maicing changes, consistent error reporting cannot be guaranteed. Usually, a unit

39 SEL-94-002

is turned over for configuration control only after it has been c d e d and, in some organizations,
unir resred. An organization that places unit designs under CM control, however, could begin to
capture error data at that earlier point in the life cycle.

Data

Do not expect to measure e m r cometion eflortprecisely. I

DeSCriptiOnS

Programmers focusing on their technical activities may not be able to report the exact amount of
time required for a particular change. Forms should allow them to estimate the approximate time
expended in isolating and correcting an error.

Date error reported

4.2.2 Data Definition

Year, month, and day

After completing a software change, a programmer submits the appropriate change form with the
data shown in Table 4-2. A change form is reqcired whenever a controlled software component is
modified, whether or not the detection of an error necessitated the change. Experience has shown
that the process of reporting such changes enhances configuration management and that the
infomation proves useful in modeling the dynamics of the software in an organization. In addition
to the measures already cited, a maintenance change form must include the type of modification.
As always, it is important to fucus locally when defining the error classes.

Effort to implement Approximate number of hours

Date error corrected I Year, month. and day

Type of modification

source of =;d’o< Requirements, specification, design. codr;t,
previous change, other

Initialization, logic/con;rol, interface, data,
computational

--
Class of error

Correction, enhancement, adaptation

Effort to idate error I Approximate number of hours

SEL-94-002 40

The SEL Change Report Form and the Maintenance Change Report Form (see Figures A-1 and
A 4 in Appendix A) are examples of forms used to capture error data for development and
maintenance projects, respectively. In either case, a sirsle form is used to report both software
errors detected and software changes to correct the errors. Programmers use only one form to
report one error that requires changes to multiple components.

Figure 4-2 summarizes the life-cycle phases, sources, and frequency for error data collection.

Figure 4-2. Error Data Collection Summary

4.3 Process Characteristics

1 Do not expect to jind generalized, well&@ed process measures. I
Focilsing on the proce- characteristics category of software measures allows investigation into
the effectiveness of vantus software engineering methods and techniques. Looking at process
characteristics also provides insight into which projects use related processes and can thus be
grouped together within the measurement program to derive models and relationships or to guide
improvements.

Because few process features are consistently defined and can be objectively measured, few core
measures are recommendexi in tnis category. Rather than capturing extensive process
characteristics, it is suggested that some basic information be collected about the development
process used for the project being measured.

4.3.1 Description

The recommended core process measures are limited to the following three:

1. Identification of development language(s)

2. Indication of the us2 of specific processes or technology [e.g., the Cleanrmm method or a
particular computer-aided software engineering (CASE) tool]

3. Description of measurement study goals

Common descriptions of measures do not exist for such iundamental software engineering
process elements as methodology, policies, automation, and management expertise. Therefore,

41 SEL-94-002

recommending that such measures be included in the core set is not useful. Measures such as
these must be defined and analyzed locally for consistency with the organization’s goals.

I Do not expect to find u e a s e of process measurements. I
Detailed process description5 cannot be stored in a database. Instead, important process
information is often provided in papers and reports. For example, if an organization is studying
the impact of using different testing strategies, the analysts must capture the detailed information
about the results of applying difftmnt techniques and report on the results.

I Understand the high-level process charwcterktics. i
Before attempting to capture advanced process measurement d.-.ta, an organizztion must have a
clear understanding of the core process measures. Experience d h i n the SEL has shown that the
most important process characteristic is the choice of programming language; the availability of
this information may provide further insight during the analysis of other measurement data.

4.3.2 Data Definition

Table 4-3 summarizes the core process characteristics measures. Figure 4-3 summarizes the We-
cycle phases, sources, and frequency for process characteristics data collection.

Table 44. Process Characteristics Data

Data

Development language

Important process characteristics
(if any)

Study goals

Language name: percentage used
Language name: percentage used

I ...

One-line textual description (e.g.,
“used Cleanroom”)

Brief description of the goals and
results of the measurement study
associated witt., the project

SEL-94-002 42

Phases: n
SOlJrCa: Analysis and packaging personnel

Frequency: At the complebon of the development phase

Figure 4-3. Process Chamctedstfcs Data Collection Summary

4.4 Project Dynamics
The next category of core measures-project dynamics-captures changes (to requirements, to
controlled components, and in the estimates for completion) during the software life cycle.
Experience has shown that such information aids management and improves understanding of the
software process and product.

4.4.1 Description

The core measures in this category characterize observed changes in the project requirements and
the product code, as well as predicted changes in the software end product. These measures
consist of

0 Changes to requirements

0 Changes to baseline code

0 Growth in baseline code

0 Predicted product characteristics

Requirements changes represent the overall stability of *,'1: software requirements and can be used
effectively to manage the development effort and to improve understanding of the characteristics
of the software problem definition in the local environment.

Records of changes to the code and the growth of the code provide insight into how the various
phases of Be life cycle affect the production of software, the most tangible product that a
development process generates. Change measures are useful in managing ongoing configuration
control processes, as well as in building models of the development process itself.

The measures of predicted product characteristics are excellent management aids and are useful
for studying the cause and effect of changes, as well as process and problem complexity. The
characteristics should be captured on a regular basis, at least monthly.

4.4.2 Data Definition

The Project Estimates Form (see Figure A-8 in Appendix A) is an example of a form used to
provide predicted product characteristics at the start of the project and periodically throughout

43 SEL-94-002

the life cycle. Table 4-4 summarizes the core project dynamics measures, and Figure 4-4
summarizes the life-cycle phases, sources, and frequency for project dynamics data collection.

Data

Changes to requirements

Table 4-4. Projwt Dynamics Data

Descriptions

Count and date of any change
made to the baselined
requirements specnkatinns

Grovvth of code

Predicted characteristics

Changes to code

~ ~ ~~

Biweekly count of the total
number of components and total
lines of code in the controlled
library

Monthly record of the estimated
completion dates and software

Weekly count of the number of
software components changed

Dates

Size

size

End design
End code
End testing
System completed

Total compon mi3
Total lines of code (new, reused,
modified)

Source: Automated tools and managers

FrequWCy: Weekly, biweekly, or monthly (see Table 4 4)

Figure 4-4. Project Dynamlcs Collection Summary

4.5 Project Characteristics
The core measures that characterize the completed project constitute another essential part of the
measurement program. Organizations derive models and relationships from project chzracteristics

SEL-94-002 44

in the historical database. Without a basic description of the overall software project effort, it is
difficult to apply the other measurement infomiation in a meaningful manner.

4.5.1 Description

The project characteristics can be broken down into five categories of core measures

I . Development dates

2. Total effort

3. Project size

4. Component information

5 . Software classification

Use simple &finitions of lge-cycle phuses.

The important dates are the beginning and the end of each life-cycle phase and the final project
completion date. If the organii-ation is using a strict waterfall life cycle with nonoverlapping
phases, then the end of a nonterminal phase is defined by the beginning of the subsequent phase.
When a different life-cycle methodology is applied, the organization will have to adjust the
structure of the project characteristics data. Each organization must determine how it wants to
capture details of the key phase dates within the software life cycle. The simplest approach is to
use the classical phase definitions of a standard life-cycle methodology. However, as long as an
organization has its own consistent internal definitions, there is no overwhelming reason to adopt
an external standard. Multiple releases can be treated as multiple projects or as a single project
followed by maintenance enhancements. .
The total effort expended on the project should be divided into hours used by programmers,
managers, and support services. At the conclusion of the project, the totals should be determined
from accounting information or another official source. The sum of the effort data collected
during the development or maintenance project should be compared with the value obtained from
the alternative source to cross-check the accuracy.

The core size measures are the total size of the software product and the total number of
components within the product. NASA experience shows that archiving additional details about
the origin of the code (e.g., whether it is new, reused, or modified) can lead to useful models.

I Use lines of code to represent size.

NASA programs typically measure software size in terms of lines of code. Some authorities
recommend other size measures [e.g., function points (see Reference 17)]. Huwever, no other
measure is as well understood or as easy to collect as lines of code.

45 SEL-94-OGL

This guidebook also recommends collecting size and origin information for software components
and defines a software component as a separately compilable unit of software for the project being
measured. Some organizations define components as subprograms or subsystems, whir . I is fine as
long as the organization applies that definition consistently and derives useful resuh. The SEL
captures the basic information for each separately compilable unit of source code and has found
that the overhead required to extract the information using an automated tool is trivial. As a
result, programmers can be freed from expending additional effort in providing that information.

The final category of project characteristics core measures is software classification. This measure
is abstract and of limited value. Consequently, most organizations are advised to spend only
limited effcrt collecting and analyzing classification data. Nevertheless, several NASA
organizations have found a high-level classification scheme to be both adequate and useful. Thesc
organizations use three bmadly defined classes:

1. Business or administrative applications

2. Sciwtific or engineering applications

3. Systems support

Other organizations may want to record more detailed classification data, such as

0 Embedded versus nocembedded

0 Real-time versus nonreal-time

Secure versus nonsecure

4.5.2 Data Definition

The recording of project characteristics data can often be substantialiy automated to minimize the
burden on the development and maintenance organization. Dates and effort, for example, are
normally available from management accounting reports; automated tools frequently can he used
to report size and component information, and the time and effort needed to indicate software
classification is minimal. Table 4-5 summarizes the project characteristics data.

No universally accepted definition exists for the start and stop times of various phases, such as
when a project starts or when a design ends. Experience within NASA has led to the use of phase
dates as follows:

0 Start of software developmenr-delivery of functional requirements documents

End of requirements analysis-<ompietion of specifications review

0 End of design-completion of design review

End of coding-completion of code and unit test

E d of testing-delivery to acceptance testing

0 End of developmenAelivery to operations

SEL-94-002 46

Data

Dates

Phase start dates (year, month, and day)

End date

Eflort

Tatal hours

Project size (lines of d e)

Other (count)

Component infomation (for each component)

Componect size (lines of code)

Component origin

Descriptions

Requirements analysis
Design
Implementation
System test
Acceptance test
Cleanup
Maintenance

Project end

Project
Management
Technia! personnel
support senrices

Delivered
Developed
Executable
Comments
New
Extensively modified
Slightly modified
Reused

Number of components
Pages of documentation

Total
Executable

New
Extensively modified
Slightly modified
Reused

Businesdadministrative
Scientificlengineering
%stems suppon

47

The effort data, compiled at the conclusion of the project, are used as part of h e high-level
summary irlformation for the project. The information represents the total cost of the project
broken down among developers, managers, and support services.

Table 4-5 lists several measures fur lines of code. Consensus may never be reached on what
constitutes a line of code. Thexfore, to facilimte various f m of comparison and analysis, this
guidebook recommends recording muitiple values. The core measures include counts of

Total lines deliverekvery logical line, including comments. blacks, executable, and
nonexecutable

Developed fhes-total lines with a reuse factor

Executable stutements-total number of executable statements

Comment lines-total number of lines containing only comments err blanks

The SEL captures source lines of code in four categories:

1. N e w d in new units

2. Exrensively modijied--code for reused units in which 25 percent or more of the lines were
modified

3. Slightly d (f i e d + x d e for reused units in which fewer than 25 percent of the lines were
modified

4. Reused verbatim-code for units that were reused with no changes

For estimation purposes, lines of code are often classified into two categories thal combine newly
written and extensively modit7ed units as nav code and slightly modified and verbatim code as
reused code. Consequently, the SEL relationships (see Reference 9) for estimating developed
lines are

FORTRAN developed lines = new lines + 20% of reused lines

Ada developed lines = new lines + 30% of reused lines

(See Sections 2.2.1 and 6.1.2 for more discussion of developed lines of de.)

Specijj which software is to be counted

It is important to be specific about which software is to be included in the size counts. For
example, it is usually appropriate to exclude throw-away prototypes, test harnesses, and
commercial off-the-shelf (COTS) software from the reported totals.

Component information can provide insight into the overall development charxteristics. Although
the total amount of information may be extensive, it should be easy to compile at the conclusion
of the project and can be almost completely remeved via automated software tools such as code
counters, auditors, or analyzers.

SEL-94-002 48

The Pmject Completion Statistics Form (see Figure A-7 in Appendix A) is an example of a form
used for collecting project characteristics at the comp!etion of a project. Figure 4-5 summarizes
the lifecycle phases, sources, and frequency for project chmcteristics data co:iect;.on.

49 SEL-94-002

Occasionally, there may be other process and product information sources that do not fall neatly
into one of the three categories. For example, personnel often have insights during document or
code reviews. Any information that can be useful within the organization’s measurement program
should be exploited.

Figure 3-1 illustrates the operational relationships among the three components of the
measurement program.

5.1 Development and Maintenance
Personnel whose primary responsibility is developing or maintaining software must not be
burdened with heavy measurement program duties.5 The measurefnent pmgram musk be designed
so that it is deemed to be a help, not a hindrance, to development and maintenance personnel. nK
operational responsibilities of the development and maintenance component are . providingdata

hticipafing in studies

5.1.1 Providing Data

Project personnel are responsible for completing data forms that should have been designed for
simplicity. At project initiatiofi, the project chancteristics (discussed in Chapter 4) are provided to
establish a baseline. Throughout the life of the project. measures must be provided on a regular
schedule, as agreed upon by the analysts and management. Possibly the most important data to be
provided by the development team are the accurate final project statistics (see Figure A-7). These
data are often overlooked in an immature measurement program.

The process for submitting completed forms must be equally simple. Developers and maintainers
must be able to deliver forms to a specified, convenient location or hand them to a designated
individual and then forget about them. A representative of the technical support component will
be respons;Sle for collecting the forms and initiating the data entry process.

Occasionally, developers and maintainers are asked to meet with the analysts. Although vitally
important, these meetings must be brief and well planned so that they do not interfere with
development and delivery schedules. Meetings may be feedback sessions for the purpose of
verifying preliminary data analysis, interviews to gather additional project characteristics data or
subjective information, or mining sessions to reinforce the proper use of specific processes beiiig
applied by the developers.

most organizations, the managers of the development organization will continue to be responsible for
collecting and applying certain data needed for ongoing prognlm management activities without impact from the
analysts. Some data collected in support of earned value analysis or planned versus actual budget information,
for example. will cuntiaue to be collected and analyzed by managers and their p j e c t control support personnel.
The role of the measurement analysts is to provide accunte models and relationships to support those
management activities.

53 SEL-94-002

5.1.2 Participating in Studies

The analysts may ask the developers and maintainers to participate in the experimental use of
some process, technique, tool, or model that is not part of the organization’s standard practice.
Such studies sometimes necessitate the use of new forms and typically require that development
and maintenance personnel attend briefings or a training session on using the new process.

Most projects experience little, if any, process change driven by the analysts. For these projects,
training is typicmlly limited to discussions of new forms and new data reporting agreements. For
projects that undergo significant process changes, however, training sessions are important to
ensure that development and maintenance personnel thoroughly understand the new process and
fully agree that the study supports the organizational goals. The study must be a cooperative team
effort: analysts must provide regular feedback of interim results, and developers or maizziners
must contribute their insight regarding the value and relevance of those results.

When development and maintenance personnel participate in such studies, they should always
receive feedback from the analysts. At feedback sessions, developers and maintainers also have an
opportunity to report their impressions of the degree of success derived from the innovation and
to dixuss any difficulties experienced in applying the new process.

5.2 Technical Support
The primary operational responsibilities of the technical support personnel are

Collectingdata

Storing and quality assuring data

Summarizing and reporting data

5.2.1 Collecting Data

Satisfactory collection of data by the technical support component depends on a clearly
established interface with the development and maintenance component and on clearly defined
terms and concepts provided by the analysis and packaging component.

Although many organizations put a great deal of effort into automating data collection, many
years of experience have led to the following rule:

A t t e ~ ~ t s to automate the data collection process shouid be limited. Becaw mutine, manual data
collection efforts add an overhead of only 1 to 2 percent (see Reference is), automation may not
result in a cost saving. In practice, extensive efforts to develop automated tools may actually
incrence cost to the total organization. It is more important to ensure that the amount of data is
driven by specific organizational goals (which will also minimize the amount required) and that
the data collection process is well defined and operationally smooth.

SEL-94-002 54

Regardless of the s k of the automated data collection effort, it is essential that management
communicate with the developers and maintainers about which parts of the process will be
monitored electronically.

Interface With Data Providers

Technical support personnel must ensure that members of the management ami technical staffs
within the development and maintenance component anderstand their responsibilities with respect
to furnishing the selected project measures. Technical support personnel must also communicate
with the providers of the data to ensure that everyone understands the details of the collection
requirements, for example,

Which personnel are responsible for collecting and furnishing project measures

0 How frequently tk mllection will occur

Which portions of the software life cycle will be reflected in the data

0 What type of personnel (management, technical, or rrdministrative) will be included m
level-of-effort measurements

M&e providing datu easy.

Personnel within the technical support component must make furnishing data as painless as
possible for development and maintenance personnel to reduce the chances for aggravation and
resentment on the part of those data providers. Publishing a list of technical support contacts can
make it easy for the data providers to ask questions or deal with measuremat problems. Making
it obvious where to deposit the data forms and collecting them promptly to emphasize the
importance of providing the forms on schedule are also useful tactics.

Definitions

To ensure that the data provided are based on a consistent understanding of the measurement
terms and concepts, support personnel must supply concise, clear definitions to the development
and mainter.dnce personnel. It is the responsibility of the analysis and packaging component to
write definitions that are consistent with organiiational goals and locally understood ideas;
however, the dsta collectors are responsible for furnishing the definitions to the data providers.
The importance of focusing locally, rather than adhering to ahitrary industry-wide conventions,
cannot be overemphasized.

55 SEL-94-002

. .

5.2.2 Storing and Quality Assuring Data

The seccnd important responsibility of the technical support component is storage of highquality
data. For project data to be used effectively in support of the goals of a measurement program,
they must be complete and accurate as defined by QA procedures and readily available.

Data Storage

To be readily available, project data must be stored in an online database. This requirement leads
to the next rule:

1
Using a COTS DBMS to support the organization’s measurement program is highly
recommended. The time and effort required to develop custom tools will outweigh their benefits.
A relational DBMS will provide the most appropriate support for data retrieval and analysis using
a variety of table combinations and user views. Spreadsheets, indexed sequential files, and even
networked or hierarchical DBMSs are simply inadequate. See Reference 19 for a detailed
description of a mature measurement database using a commercial DBMS.

Data Quality

The quality of the stored data must also be considered. From the perspective of the support
component, data quality assurance is a two-step process:

1. Verification of source data-Discrepancies must be tracked to the source and corrected.
This step includes checking that the

a. Data forms have been submitted and are complete (i.e., all required values are
provided).

b. Values are of the specified type (e.g., numeric fields do not contain non-numeric
values).

c. Values are within specified ranges (e.g., the number of hours of effort per day per
person is never greater than 24).

d. Values are reported on the prescribed schedule.

2. Verification of data in the database-After the values have been entered into the
database, b second check is performed to verify that the entries match the source value.

An organization with a mature measurement program may be able to use automated tools that
allow developers to enter data directly into the database via online forms, thereby eliminating
paper forms and the manual QA process. Although this approach may seem ideal, experience has
shown that it often leads to unreliable data and that the cost of a manual process is relatively
small.

SEL-94-02 56

Despite the quality assurance steps, *e next rule still applies:

Expect measurement data to $@&wed, inexact, and inconsistent.

The collection and verification processes are fallible, and some data will be incomplete and
imperfect. A third quality assurance step, beyond the scope of the support personnel, will
subsequently be performed by the analysts to determine the accuracy and usefulness of the data.
The analysts will perform cross-checking, back tracking, and general qualitative analysis on
the data.

5.2.3 Summarizing, Reporting, and Exporting Data

Technical support personnel are also responsible for producing and distributing reports and data
summaries to data users in all three measurement program components. Occasionally, they are
also responsible for exporting raw data to external organizations. Reports can be tabular or
graphical, printed or displayed. Summary reports are designed to highlight particular trends or
relationships.

Not all reports are generated by the support personnel, however. High-level data analysis reports,
prepared by the analysis and packaging component, are discussed in the next section. Routine
management reports of project control information remain the responsibility of management.

Many of the raw data and summary reports are generated on a regular schedule. These reports
range from singre-project summaries focused on a particular data type to multiple-project roll-ups
that provide high-level statistics in a format compact enough to facilitate project-to-project
comparisons. Support personnel distribute those reports to development and maintenance
personnel to provide feedback on project measures. Analysis and packaging per2onnel alr 3 use the
reports to identify projects and data to be used in studies and model generation.

Figure 5-2 provides an example of a regularly scheduled Project Summary Statistics report,
showing actual data for projects in a NASA organization with a mature measlirement program.
The report also contains several questionable entries (e.g., 0.0 hours for support where there
probably should be a positive value) and illustrates the rule that data may be flawed, inexact, or
inconsistent.

The technical support component also generates some of the raw data and summary reports on an
ad hoc b d i s , as requested by users of the data. Requests for specific data on specific projects
come from both the development and maintenance component and the analysis and packaging
component. Such reports also include low-level data dumps used by support personnel during the
data verification process.

A related responsibility of the support component is preparing measurement data for export to
another organization. Sharing data across domains an5 interpreting data out of context are
nmma!ly not meaningful, as cautioned in the “focus locally” rule. Nevertheless, exporting data to
another organization occasionally makes sense. For example, the organization may intend to use
acquired data to support the establishment of its own measurement program. In addition to

57 SEL-94-002

Pro:ect Svmaary Stetintic#

Projec: data are not final

:c :32 15500 11800

5 224 16000 i4100

2 17) 34902 34902

2 415 4i829 4020:

40 292 50911 45343

20 397 Gi78 49712

76 8547 8041

494 : 81434 70951

267 j 72412 SS289

I4 930 I 270602 141084
I

4 322 36305 26986

6 244 52817 45825

- 9
I. .. *-

0 0 . 0 0

0 0 : 0 0

Incarapiete data for this project

i; 278 26844 24367

0 0 1 0 0

3c 392 ~ 2573; 25510

0 o i 0 0

txttslsively

llodlfled

SLOC

0

0

0

450

J

0

0

1879

16017

0

1342

0

0

0

0

0

0

Slightly

Hoiiified

stoc

0

0

0

IO44

4673

10364

446

0

lie4

13647

7363

2156

0

0

2477

0

0

0

Old

stoc

3'106

1900

0

*34

893

i102

60

10483

11060

7934

2556

4494

0

0

0

0

22:

0

P r o i e e t Crireria : ALL

tzo. of

chaoees

2670

213

413

544

12S5

221

307

1776

427

1494

412

344

0

0

1:77

0

124

0

Technical

SllDmt

HOUrS

177iS.O

3498.0

7965.3

32083.4

i2S88 -0

17039.0

2285.6

17057.0

13214.6

49930.3

11005.0

6106.3

19208.9

59.0

10946.0

24662.2

1514.0

0.0

support

semicea

lhU8

1774.0

11.0

0.0

4407.6

1109.0

3056.0

0.0

1875.0

1365 .8

4322.9

1524.5

0.0

3612.5

0.0

967.0

3739.2

0.0

0.0

issuing a caveat about the danger of misinteqretation, support personnel must sanitize the data
before export to preserve the confidentiality of the data providers. Sanitizing the data requires
eliminating names of individuals and substituting generic project names for the mnemo&s used to
identify projects within the local environment.

5.3 Analysis and Packaging
Analysis and packaging responsibilities Consist of

Designitgstudies

Analyzingprojectdata

Packagingresults

The analysis and packaging component has the heaviest burden within the measurement program.
The analysts must first design measmment studies to collect and analyze project data in support
of the organization's process improvement goals. Next, they must use the data to develop and
maintain organizational models, such as cost estimation models and error profiles, and to

SEL94-002 58

determine the impact of new technologies, such as object-oriented design or code reading, on the
Organization. Fmally, they must provide the derived information to the project organization in a
useful form, such as guidebooks. tools, and trai :?g courses. The analysis and packaging effort
should always be transparent to the development and maintenance projects providing the data.
Developers have a right to inderstand why they are providing the data. Moreover, a clear
understanding of the connection between the data they provide and the models and guidelines
produced by the analysts leads to higher quality project data and a higher degree of confidence in
the resulting products.

By analyzing and packaging measimment data, these personnel support the three reasons for
establishing a measurement program:

1. Understunding-Analysts use routine data from the core measures to build models and
relationships an4 to characterize the overall software processes and products.

2. Munuging--EJthough the analysts do not play an active role in managing the software
developmen1 and maintenance projects, they provide information and models to the
development and maintenance personnel to improve the quality of project management.

3. Guiding improvement-Analysts consider each project an experiment, and the goals for
collecting specific measures are clearly defined in project experiment plans. These
experiments, which are actually studies of software engineering processes, can range m
scope from straightforward validation of the current organizational models to controlled
investigations of the impact of introducing a new methodology. Data from projects with
similar goals are analyzed and synthesized to produce models and to understand the
impact of process changes. Beneficial new technologies and organizational process and
product models are then packaged for use by the projects.

5.3.1 Designing Process Improvement Studies

On the basis of the overall goals of the organization and the characteristics of the individual
projects, the analysts, working with the project leaders, prepare plans that define specific study
goals and specify the data to be collected. Figure 5-2 provides an outline of a process study plan.
In some cases, analysts prepare detailed plans for projects participating in the measurement
program. In most cases, however, no significant changes will be proposed, and the study goals
will be primarily to refine the understanding of the s o h a r e process or product; routine
measurement data will be sufficient, and no training will be needed. Many of the study plans will,
therefore, be relatively brief, containing simple desm’pfims of the data to be collected, the
analysis to be performed, and the study goals (e.g., “gain insight into the classes and origins of
software errors,’).

Analysts must also prepare higher level organizational plans to coordinate the studies across
projects and to ensure that all high-priority organizational goals are being addressed. They work
closely with the organization’s managers to choose appropriate projects for major studies.

Appendix B includes a sample process study plan. The plan summarizes key characteristics of the
project, specifies study goals, identifies key questions to be answered by analyzing project data
and information, and clearly defines the data to be provided by the project.

59

Process Study Plan for
{Project Name}

plan Originator Name}

Pate)

1. Project Description

Briefly describe the application and the project team.

2. Key Facts

Briefly state the life-cycle methodology, methods, sc;iedule, project size,
implementation language, and any other important details.

3. Goals of the Study

Explain the goals of this study.

4. Approach

Describe the steps planned to accomplish the goals.

5. Data Collection

Itemize the measurement data and information to be collected during the study.

Figure 5-3. Process Study Plan Outiine

A key reason for a study is to assess and guide change. Any change, such as ir,rroducing a new
method, tool, or language, may involve an element of risk, so any sigtllficant change to a standard
development or maintenance process must be jointly approved by the analysts and the project
manager. When asked by the analysts to introduce evolving technologies on a project, a manager
must consider the risk, use comrnor sense, be cautious, and even refuse the change if the risk is
too great. Nevertheless, process studies are important to every organization, and each
development or maintenance project is expected to add some amount of process information to
the organization’s experience base.

Just as the organization’s high-level measurement plans must relate to its overall goals, a process
study plan for a praject (or for a related set of projects) must show a clear connection between
the data being collected and the goals of the study. The sample plan in Appendix B was developed
for an ongoing project within an organization that already had developed a high-level plan. It
includes a high-level description of the approach for analyzing the project information and defines
a study intended to support new organizational goals.

5.3.2 Analyzing Project Data

The analysts continually synthesize data from many projects to gain an understanding of both the
product and process characteristics of the organization. They look for distinguishing project
characteristics that identify subgroups within the organization-for example. 911 projects using the
Ada language or all projects applying object-oriented requirements analysis and design methods.
That effort results in a baseline set of process and product models for the organization and may
reveal changes (to models and relationships) that aii not the result of explicitly introducing new

SEL-94-002 60

processes. Baseline analysis is a major effort, and it is a critical prerequisite for any analysis or
packaging of the results of izdividual project studies. Experience has shown that the baseline
characteristics change slowly, even with the infusion of new processes. Therefore, packagers
generate new handbooks and guidebooks only every 3 to 5 yes;-.

Analysts also examine individual pr+cct data to determine how trends co. clate with project
successes and difficulties. They design the content of the high-level analysis re; ts and work with
technical support personnel to establish the frequency for producing and distributing reports.
These reports generally provide high-level summaries of project characteristics or support specific
study objectives. Figure 5-4 provides an example of a high-level development project summary
report. Figure 5-5 shows a similar report for a maintenance project.

Once the crganization’s pimesses and products have been characterized, the analysts shift their
focus to assessing the impact of change. They compare current project measures with the
organization’s historical models to measure the impact of evolutionary changes introduced by
either explicit changes to the software processes (such as a new method or tool) or external
influences (such as changing the problem complexity). This analysis xsults in updated process,
product, or management models.

Analysts also focus on determining the impact of new technologies and approaches introduced m
major experiments. They compare experimental data with the historical baseline models to assess
success or failure. Often the result indicates a guarded success, suggesting that continued study iS
needed to refine the technique and confrnn success.

Figure 5-6 shows the results of a study designed to determine the impact on the distribution of
effort across software activities and lifecycle phases when the Ada programming language was
intrcduced into an organization that had previously relied on FORTRAN. A f r x the organization
had gained the experience of using Ada on nine projects, the models stabilized as shown in the
figure (see Reference 10).

Although analysts use objective measurement extensively, they also depend heady on subjective
information gathered directly from project personnel and recorded in project history reports to
help interpret the data. Each project has a unique set of drivers and circumstances that must be
considered when interpreting the data. Chapter 6 addresses the analysis, application, and feedback
of measurement information in more detail.

5.3.3 Packaging the Results

As analysts gain greater insight into the characteristics of the current software Jevelopment and
maintenance environment and the impacts of specific software methodologies on that
environment, they must infuse that understanding back into the development organization,
packaging the appropriate software practices for the problem domain in well-founded standards
and policies so that they can be applied on ensuing projects. Packaging entaiis generating the
following items:

0 Software management policies and guidelines

Software development and maintenmce standards

61 SEL-94-02

The key models used for gauging project pmews and quality are organized and packaged
together, preferably with the planning models, in a single reference source. Typical progress
models include local profiles of software growph, computer use, and test completion. Quality
models include error rates, reported and corrected software discrepancies, and software change
rates. Figure 5-7 shows an example of an error rate model used to predict and track errors
throughout the life cycle. The model was calibrated by measuring the error characteristics cf over
25 projects with more thar. 5,000 e m s reponed. It depicts the typical rate of finding e m m
code (four emrs per KSLOC). during the system test phase (two errors per KSLOC), and during
acceptance testing (one error per KSLOCj. a reduction of 50 percent in each subsequent phase.
Because no data were collected during the design phase, the error rate is zero. The variation was
also computed, as shown in the figure. An actual emr rate above the bounds of the model may be
the result of misinterpreted requirements or may be caused by highly unreliable or complex
software. An actual rate below the bounds may be the result of particularly well-built software, a
relatively simple problem, or inadequate testing.

Every organization can and should produce a document contairing the complete set of models,
relationships, and management guidelines used wittin the organization. (See Reference 8 for an
example of such a document.)

Software Development and Maintenance Standards

In a mature measurement program, standards for software development and maintenance address
each phase of the software life cycle, covering the entire range of technical activities. These
standards define thz products, methods, tools, data collection procedures, and certification criteria

65 SEL-94-002

that have been identified as beneficial to the organization. Separate, detailed standards
characterize programming practices unique to the local ewimnment or to a specific development
language; they also address sDecialized techniques, such as the Cleanroom method or object-
oriented design.

The most useful, highquality software engineering standards are derived from the practices of the
organization for which they are intended; that is, they are measurement driven. A standard
requiring the use of processes that are incompatible with the organization’s development and
maintenance methodology cannot be successful.

Software Training

The organization’s goals. environment, and measured experiences must drive the planning and
execution of the training cniculurn. Courses reflect the understanding of the characteristics of
the local environment, and each course must respond

Training becomes essential when new technologies, ;tmdards, tools, or pmcesses are in* into
the software engineering envimnment Personnel are more likely to accept a new approbch when
it has been introduced in well-organized stages within the interactive setthis of a traini~g course.

Training must be provided first to those who are pankiptirig in an experiment with a new
technology and then to a wider audience as soon as the technology has been adopted for general
use within the organization. A training program should also include courses that introduce new
personnel to the softwiue dcvelopment and maintenance environment.

a specific need.

Tools and Automated Aids

Packaging personnel also build tools and other automated aids to facilitate software management,
development, maintenance, or data collection processes. Such tools include

0 Cost estimation aids based on local models

Management aids that compare actual measured values with baseline estimates

Design aids that are driven by experimental rzsults inlcating beneficial design approaches

In addition, more sophisticated tools may use the organization’s extensive historical infomztion
for managing and for analysis. An example of such a tool is the Software Management
Environment (SME) (Reference 20). It encapsulates experience (Le., data, research results, and
management knowledge) gained from past development projects in a practical tool designed to
assist current software development managers in their day-today management and planning
activities. The SME provides integrated graphical features that enable a manager to predict
characteristics such as milestones, cost, and reliability; track software project parameters;
compare the values of the parameters to past projects; a n a l y ~ the differences between current
and expected development patterns within the environment; and assess the overall quality of the
project’s development progress. Figure 5-8 illustrates the architecture and typical uses of such a
tool.

SEL-94-002 66

-
4 I

- ANALYZE

?! e
3 -
0

E
1

L

- Cment Project

Model

1

Reports of Process Studies

For each process study, analysts prepare one or more reports that address the goal, the specific
questions to be answered, the methods employed, the results measured, and the conclusions
drawn. Interim reports document partial results during lengthy or ongoing studies, and final
reports are prepared immediately after the study is completed.

67 SEL-94-002

Final reports are vital sources of information when the time comes to integrate study
recommendations with other standard practices before packaging them as policies, guidebooks,
courses, or tools. An organization may, therefore, find it helpful to collect all study reports
produced within a year into a single annual reference volume.

Some organizations repackage study reports for dismbution outside the local environment as
conference papers and presentations, thus gaining valuable feedback by subjecting the results to
peer review. Such scrutiny can offer comparisons, suggest other interpretations or conclusions,
and help improve the data collection procedures and analytical methods employed by the
organization.

Updates of Packaged Materials

All packaged materials-policies, standards, course materials, tools, and study reports-must be
maintained in an organizational repository. Together with the information in the measurememt
database, the repository of packaged materials functions as the memory of the organization. It is
essential that the contents of the library be catalogued ami that the catalog be kept up-to-date as
new material is added. In the SEL, for example, a bibliography containing abstracts of al l SEL
documents is revised and republished annually.

The analysis and packaging component also updates guidebooks, training courses, policies, and
tools on a regular basis to keep the organization abreast of current software engineerin:: practices.

SEL-94-002 68

Chapter 6. Analysis, Application, and Feedback

Chapter Highlights

UNDERSTANDING
softwareattributes
c o s t c ~ s t i c s
E r r o r ~ s t i c s
Pmjectdynemks

MANAGING
Phnnlng
Assessingprogress

0 Evaluatlngprocesses

GUIDING IMPROVEMENT
0 Measuringprocessimpact
0

0

Adapting process to local environment
Eliminating processes with 1- value

69 SEL-94-02

T his chapter describes specific approaches for using measurement information effectively.
Software measurement programs must focus on the use of data rather than on their
collection. Thus, the appmach to using measurement data must be clearly defined, and

the data must be analyzed and packaged in a witable form. The effective use of measurement data
is an outgrowth of the planning exercise that establishes the organization’s goals, which drive the
measurement activities.

The following sections address the analysis, application, and feedback of measurement
information in the context of the *bee key reasons for establishing a measmment program, as
discussed in Chapter 2:

1. Understanding

2. Managing

3. Guiding improvement

Examples drawn from experiences within NASA illustrate the important points. Because each
organization’s measurement goals may differ, the examples presented here may not relate directly
to the rids of other organizations.

6.1 Understanding
The first reason for measurement-undersfanding-includes generating models of software
engineering processes and the relationships among the process parameters. As an organization
builds more models and relatioashps and refines them to improve their accuracy and reliability, its
personnel develop more insight into the characteristics of the software processes and products.

True understanding requires qualitative analysis of objective and subjective measurement
information, including exanination for accuracy and checks for flawed, missing, or inconsistent
data values. If used properly, subjective information is as valuable as objective counts. Unlike
objective data, which are used in statistical analysis, subjective information reflects the experience
of managers and developers within the organization’s local environment. The resulting models and
relationships, whether derived from objective or subjective infomiation, are relevant only within
the local environment.

The underst;.Lng process includes the following major measurement applications:

Software attributes

0 Cost characteristics

0 Error characteristics

Project dynamics

Increased understanding provides the foundation for building models and relationships and for
developing the key infonnation required for managing subsequent software development efforts.

The examples in this section depict various measurement application. that have proven beneficial
to experienced me-surement organizations. All of the models can be developed from the core
measures described in Chapter 4. The example descriptions are by no means exhaustive.

SEL-94-002 70

Finding tfe answers to the questions posed in Table 6-1 is an essential activity in applying
measurement. Any software organization will benefit from analyzing the fundamental infomation
shown in the examples that appear throughout the rest of the chapter.

What are the error rates during development and maintenance?

What types of errors are most prevalent?

What is the expected rate of requirements chznges during

How do size and complelaty affect error rates?

development?

How fast does code grow during development, and how fast does it
change?

Table 6 1 . Questions Leading to Understanding

6

7

8

9

Measurement
Application

Software
Attributes

~

cost
Characteristics

Understanding

What languages are used, and how is the use evolvi?g?

What are the system sizes. reuse levels, and module profiles?

What is the typical cost to develop my software?

What percentagss of my software resources are consumed in the
various life-cycle phases and activities?

How much is spent on maintenance, QA, CM, management, and
documentation?

Examples

1

2

Error
Characteristics

Project
Dynamics

6.1.1 Software Attributes

Information about software attributes is easy to record and use but is too often overlooked. At a
minimum, organizations should record the sizes, dates, and languages used on every project.
Those basic characteristics are necessary for developing cost models, planning aid$, and general
management principles. Table 6-2 shows a subset of the actual data used in calculating the
information shown in the examples that follow. For a more complete listing of the hta, see
Reference 9.

finmple I :
Language Evolution

Goal:

Measures needed h j e c t thtes, sizes, and hguages.
(See Sections 4.3 and 4.5.)

71 SEL-94-(102

Table 6-2. Software Attribute Data

C 7.965

23,707 I 1,526
c- 341902

ACME FORTRAN I 01i88-09/90

U ARSTELS Ada 02/88-12/89 44,441
r
I EUVEAGSS FORTRAN 10/8&09/90 55,149 193,860 I 21,658

EUVEDSIM I Ada I 10/88-09/90 I 57,107 I 126,910 I 20,775

EUVETELS Ada 10/88-05/90 2,532 64,164 4,727

SAMPEX I FORTRAN I 03/90-11/91 I 12,221 I 142,288 I 4,598

SAMPEXTS

SAMPEXTP I FORTRAN I 03/90-11/91 I 17,819 I 1,813 I 6,772

Ada 03/9043/91 3,301 58,146 2,516

POWITS

TOMSTELS

FASTELS

FASTAGSS

SEL-94-002

Ada 03/90-05/92 20,954 47,153 11,695

Ada 04/92-09/93 1,768 50,527 6,915

Ada 08/92-10/93 5,306 59,417 7,874

FORTRAN 08/92-04/94 21,750 125,405 7,550
-

72

Code Reuse Trend
Figure 6-2 shows trends derived from 1 1 FORTRAN and 8 Ada projects. The models
were initially produced in 1989 for the early projects; more recent projects reflect a
significantly higher percentage of reuse.

The basic source code information is needed not only f x tracking changes in the code
reuse level over time but, more importantly, for determining cssential cost models for the
local environment. The following section discusses how to derivt cost-impact models of
reuse.

100 -
90-

2 80-
al

70-
$ 60-
2 50-
& # - 2 30-
I? 10-

0

20-

o c

X W a
Q Z

g:

23

Early FORTRAN FORTRAN Projects
Baseline (1 986-1 988) Since 1989

I

100

90
z 8 0
al

al
IY 70

0 - 5 0
a 4 0
0

0,

2 3 0
al

al
2 2 0

10

0
Early Ada

Baseline (1 986-1 638)
Ada Projects
Since 1989

Figure 6-2. Code Reuse Tmnd

SEL-94-002 74

6.1.2 Cost Characteristics

Software cost characteristics are probably the most important set of attributes that contribute to
an understanding of software. Cost characteristics include productivity, cost of phases, cost of
activities, cost of changes, and many other attributes required for managing, planning, and
monitoring software development and maintenance.

Example 3:
Cost Versus Size

Goals: Evaluate the cost of reusing code.

Determine the cost of producing code in the organization.

Measures needed: Project size, dates, reuse, and eflort data.

(See Section 4.5.)

Cost of Reusing Code
Simple measures can be used to derive a local model for the cost of producing software.
One major factor that must be analyzed is the impact of code reuse on cost. Borrowing
code written for an earlier software project and adapting it for the curren. project usually
requires less effort than writing entirely new code. Testing reused code also typically
requires less effort, because most software errors in reused code have already been
eliminated. Software projects using a significant amount of reused code usually require
less overall effort than do projects with all code written frc 7 cratch.

Chapter 2 introduced the following relationship among the values of effort (cost of
personnel), DLOC, and productivity:

Effort (in hours) = DLOC / Productivity

where

DLOC = New SLOC + Reuse Cost Factor x Reused SLOC

The reuse cost factor is a weighting factor applied to reused source code. Several
simplifying assumptims can be made to compute an approximate value for this factor. The
most significant assumption is that all similar projects reflect approximately the same
productivity; hence, the only variable is the cost of reuse. In this case, the similarity of the
projects comes from their having been developed within the same environment and in the
same language (FORTRAN). Although numerous other factors affect the cost of
development, it is best to apply simple measures to arrive at an approximation before
attempting detailed analysis oi more complex factors.

75 SEL-94-002

Points derived from values in Table 6-2 can be plotted to illustrate the relationship
between lines of code per hour and the reuse percentage as shown in Figure 6-3.
Assuming that productivity (DLOCEffort) is constant, the straight line fit to the DLOC
points indicates h a t 20 percent is a reasonable approximation for the reuse cost factor for
FORTRAN.

I I
i

i
I

20-
A

f

t n
.- c 10
=!.

c’ 5 -

0 0

I trevelopeciSou~ Lines
cn

i r c. -
I 0

3
0 *

0 . - - I /
IOO i 0 20 40 60 80

i
Yo Reuse

ngum 6-3. Derivation of 20 Percent Reuse Cost Factor for F O m A N

Figur, 6 4 shows a slightly different approach for Ada language projects. Analysts within
the same environment studied size, effort, and reuse data from five projects developed
between 1987 and 1990 to derive the Ada reuse cost factor. Attempting to produce a
constant productivity valup, they computed the productivity as DLOC per hour for each of
the five projects whit-. varyin: me reuse cost factors. In this case, the 30 percent factor
resulted in the In-:est standard deviation for the computed productivity values and was
adopted for this organization.

Every organization can develop its own reuse cost factor with the simple measures listed
in Ttble 6-2.

cos1 of PrOlit1cing code
One of the most basic aspects of software engineering understanding is the ability to
model the cost of a system on th. basis of size or functionality. Sexxion 2.2 discussed the
basic estimation models, relauna cost to software size, which have proven useful in one
environment. Those models were derivcd by analyzing da*l, from over 100 nrojects
spanning many years an ’ j naking careful decisions about which projects to ‘nclude in
the baseline made1 and which to exclude. Organizations just starting to apply measurement
shvuld begin to establish cost r; d e l s v ii! heir own data.

SLL-94-02 76

Example 5:
Cost of Major Activities

~ ~ ~

Goal=

Measues need&

Build m&k of tke cost of maintenance and other mqjor
activi&s, such as documerrtation andqrralilp assumnce.

Developer activity data, e#o* dsoftwrve size.

(See Sedions 4.1 and 4.5.)

Cost of Maintenance
Software maintenance includes three types of activities occuning aEter the system is
delivered:

1. Comxting defects found during operatic al use

2. Making enhancements that improve or i n c m functionality

3. Adapting the software to changes in the operatiod environment, such as a new
operating system or compiler

The SEL environment has two major types of systems under maintenance: multiple-
mission systems, which support many spacecraft and have a software I i f h of from 10
to 30 years, and single-mission support systems, which mn as long as ihe spacecraft are
operational, typically from 2 to 7 years. Both types of systems are written primarily m
FORTRAN on mainfranles and are roughly the s2me magnitude in size (100-250
KSLOC). A large percentage of the maintenance effort is spent enhancing the system by
mo&fying and recertifying existing components. SEL maintenance personnel acid few new
components and produce little new documentation. Average annual maintenance cost
ranges froni 1 to 23 percent of the total development cost of the wiginat systeni.
Table 6-3 includes analysis of representative data from several SEL systems mder
maintenance for at least 3 years. Some of the values are not mailable and some are
questionable; nevertheless, analysis provides useful insights into the cost of maintenance.

On the basis of the above analysis, and in ccnsideration of the high variation among
systens, the SEL uses the conservative approach shown in Table 6-4 when estimating
mainteclance costs.

A general model of the overall cost of the development and maintenance of software can
be of significant value for idectifylng more detailed breakdowns of cost by key activities.
The data from projects depicted in Table 6-2 are used to determine the cost of several key
activities.

79 sm-94-02

COBEAGSS

GROAGSS

I I

s 178.682 49.931 57 0 0 19 0.04

s 236.393 54,755 496 370 370 412 1

GOESAGSS

EUVEAGSS

NOTE: S = single mission system.
M = multiple mission system.

~ ~

s 128.859 13,658

S 249.009 21.658

I I 1

DCDR
ADG
CFE

1 ~ a i m a ~ ~ n n u a l ~ i n t s n a n c e I
Cost as a Percentage of Total

PrOiectTYPe

Multiple-mission systems 15%

M 75.894 28.419 n/a 4.000 4.000 4,000 5

M 113.455 45,890 Ma 6.000 6.000 6.000 13

M 98.021 I 30,452 n/a 2.000 2.000 2.000 2

Costs of Documentation, Qualily Assurance, and Configrarrstion Management
nc osts of support activities such as documentation, QA, and CM are determined from
the elopment activity measures combined with the basic time reporting from the
supp~ t organizations. These data are easy to collect in mcst software organbations.
Figure 6-7 shows the data collected from one large PJASA organization. A xisic
understanding of the cost of thtse activities is essential so that any change or attempt to
plan for these efforts can be based on a solid foulidation.

6.1.3 Error Characteristics

Understanding the characteristics of errors in the software products is just as importarit as
understanding the cost of producing and maintaining software. The nature clf software errors
includes the error frequency, the cost of removing errors, the severity 01' tffe errors, the most
common causes of errors, and the p m s s e s most effective in identifying or preventing errors.

SEL-94-002 80

Example 6:
EmrRates

Goals: &&mine the average ride of uncovering emm.

Determine which fife-cyckphuser yield Ure most errors.

Corrrpute the e m r rate in &fivemd s o e m .

Project size, phase &es, and reported errors.

(See ~ c t i 0 n . s 4.2 and 4.5.)

-.

Measures net-&

Error Rates by Phase
Figure 6-8 illus' .xes a mock1 of the number of reponed errors (normalized by the product
size) over the various phases of the life cycle. This model conibines product and process
data .,id providcs two types of information.

The first type is the absolute error rate expected in each phase. The rates shown here are
based on SEL development projects from the mid-1980s. The model predicts about four
errors per KSLOC during implemen*-tion, two during system testing, one during
acceptance testing, and one-half during o,xration and maintenance. Those error rates by
phase yield an overall average rate of seven crrm per KSI.OC during development. An
analysis of more recent projects indicates that mor rates are declining as improvements
are made in the software process and technology.

81 SEL-94-002

Figure 6-8. Error Dedection Rate by phase

The second piece of information is that error detection rates are halved in each subsequent
phase. In the SEL, this trend seems to be independent of the actual rate values, because
the 50 percent duct ion by phase is holding me even as recent error rates have decked.

Example 7:
Error Classes

Goal=
Measures needed= Reported error hfomafion.

Deternine what types of emrs occur most O&R.

(See Section 4.2.)

Types of Eimm
Figure 6-9 depicts two models of error class distribution. The model on the left shows the
distribution of errors among five classes for a sample of project.. implemented in
FORTRAN. A manager can use such a model (introduced in Section 2.2.1) to help focus
attention where it is most needed during reviews and inspections. In addition, this type of
baseline can show which amfiles seem to be consistent across differing project
characteristics, such as in the choice of development language.

The model on !he right shows the distribution across the same classes of errors for Ada
projects in the same environment. Contrary to expectation, there is little difference in the
error class profiles between the FORTRAN and Ada development efforts. One possible
interpretation of this result is that the organization’s overall lifecycle methodology and
the experience of the people in that environment are stronger influences on process
profiles than any one specific technology.

SEL-94-02 82

1 0.05251

L

a2 ..I
Lz
2 0.0225

....
0.0150-.

I I
15 45 75 105 135 165 195

McCabe Complexity

0.06oO

0.0525 1
.-
.........

0.0075 1
loo r)vu 500 7 9 0 900 1100 1300

S L W

Figure 6-10. Cyclomafic Complexity and SLOC as Indicators of Errors (Preiminary dnalysh)

6.1.4 Project Dynamics

An analysis of project dynamics data can give managers weful insight into changes to
requirements, to controlled components, and in the estimates to comp!r?tion.

Example 9:
Growth Rate Dynamics

Goai: Derive a model that charcrcterizes the local rate of cod?
production.

~~~ ~~ ~ 

Measures nee.?ed: Phase dates and weekly count of cont#eted code. 

(See Section 4.4.) - 

The gro\.Lh rate of die source code in the configuration-controlled library closely reflects 
the completeness of the requhments prodwt a:d some aspects of the software process. 
In the SEL envlrwment, periods of shprp growth in SLOC are separatd bl. penb4s of 
more moderate growth, as shown in Figure 6-1 1. This phenomenon reflects the SEL 
approach of imFlementing systems in multiple bi45s. The model also shows that, k 
responLe to requirements changes, 10 percent of the code is typically produced after the 
start of system testing The uncertaiqty a d  highligh s the typical variation expected with 
this model. 

SEL-94-002 84 



I I 
I I 
I I I 
I I 
1'- 

10- 

10 20 30 40 50 60 70 80 90 
% of Schedule 

Figure 6-1 1. Growth Rate Model 

6.2 Managing 
The management activities of planning, estimating, tracking, and validating mr '4s, introduced m 
Section 2.2, all require insight into the charac%ristics of the organization's software engineering 
environment and processes. Measurement data extracted during the development and maintenance 
phases will provide quantitative insight into whether a project is progressing as expected. 

An analysis of the following types of measurement information can lead to better management 
decision making: 

Planned versus actual values. Tracking ongoing progress requires not only the actual data 
but also planning data based on estimates from local models. Candidates for such analysis 
include effort, errors, software changes, software size, and software growth. 

Convergence of estimates. A manager should expect to revise estimates periodically. The 
frequency of revisions can be based on the pattern of the data being tracked. If the acluals 
are deviating from the current plan, more frequent updates are needed. The est mates 
themselves should eventually converge and not vary wildly from one estimate to another. 

Error history Qll(i classes of errors. An analysip of error data can pinpoint problems in the 
quality of development or maintenance processes. Possible focus areas include design or 
code inspections, training, and requirements management. Data from relatively few 
projects can be effectively used in this manner. 

85 SEL-94-002 



An effective measurenient program enhances tnanagement activities: 

0 Planning. Historical information, along with estimates of the current pioject, enable the 
manager to prepare schedules, budgets, and implementation strategies. 

0 Assessing progress. Measures indicate whether projected schedules, cost, and quality will 
be met and also show whether changes are required. 

0 Evaluating processes. The manager needs insight into whether a selected software 
engineering process is being applied correctly and bow it is manifested in the final product. 

Using the information gained from tracking software measures, managers have numerous options 
for addressing possible progress or quality problems. Those options include adjusting staff, adding 
resources, changing nrocesses, replanning, and enforcing a process, among others. Table 6-5 lists 
the examples preserlted in this section, which are derived from actual data on NASA software 
projects. 

What is my basis for estimating cost, schedule, and effort? 

What is n y  basis for projecting code growth and change? What is 
my organization’s model of expected error rate? 

Is my project development proceeding as expected? 

How stable are the requirements an: design? 

Is my original staffing estimate on track? 

Are we correcting defects faster than they are detected? When will 
testing be complete? 

Are we producing high-quality and reliable software? 

TaMe 6-5. Questions Supporting Management Activities 

I I 

Measurement 
Application 

Planning 

_ _ _ _ _ ~  

Assessing 
Progress 

Evaluating 
Processes 

Managing Examples 

~ ~ 

Are our standard processes being applied properly? Are they having 
the expected effects? 

I I 

10 

11 

12 

13 

14 

15 

16 

6.2.1 Planning 

A software manager’s major responsibilities include effective planning at the start of a project. 
The manager must estimate cost, schedules, and effort; define the processes; and initiate a 
mechanism for tracking against the plan. The major application of measurement information for 
the planning phase is to make use of the derived models, relationships, and insights gained from 
measurement understanding efforts. 

SEL-94-002 86 



Example 10: 
Projected Cost, Scheduling, and Phases 

Goal: Estimate cost, schedule, eflor+, and errors. 

Measures needed: Project size estimate, mo&ls, and relrrtionships. 

(See Sections 2.2,6.1.2, and 6.1.3.) 

Although estimating the size of a new project is not easy, most organizations have an 
approach for producing a reasonable size estimate in SLOC. Once that size estimate has 
been calculated, the derived models for cost, schedule, effort, and other project 
characteristics can be used in the planning phase. The models described in Section 6.1 are 
used to derive more detailed estimates of a project based on the si= estimate. The 
following example depicts the planning for an AGSS project whose initial size estimate is 
150 KSLOC of F O R M  code, of which 90 KSLOC is estimated to be new and 60 
KSLOC is estimated to be reused from other systems. 

The manager computes DLdC as 

DLOC = New SLOC + (Reuse Cost Factor x Reused SLOC) 
= 90K + (0.2 x 60K) 
= 102K 

Using a productivity rate of 3.2 DLOC per hour (see Chapter 2) 

Effort = DLOC / Productivity 
= 102 KDLOC / (3.2 DLOC per hour) 
= 3 1,875 hours 
=206 months 

The manager next distributes the effort across the life-cycle phases (see Table 6-6) using 
the percentages showr. in Figure 6-5 and estimates the duration of the development using 
the relationship introduced in Chapter 2: 

Duration = 4.9(Effort)03 

= 4.9(206 monthsjo3 
=24.2 months 

Figure 6-8 tells the manager to estimate 7 errors per KSLOC during development; for 150 
KSLOC, the estimate is 1,050 errors distributed as shown in Table 6-6, with 75 additional 
errors estimated to be detected in the operational system. 

87 SJX-94-002 



Tabla 6-6. Project Planning Estimates 

Activity - Estimate 

Development Effort 
Design (30%) 
Coddunit test (34%) 
System test (1 6%) 
Acceptance test (20%) 

Annual maintenance effort 

Documentation effort 

62 staff-months 
70 staff-months 
33 staff-months 
41 staff-months 

31 staff-months 

23 staff-mcnths 

Total 1 206 staff-months 

Duration I 24.2 months 

Errors 
Coddunit test 
System test 
Acceptance test 

Total development 

600 errors 
300 errors 
150 errors 

1 1,050errors 

Errors 
Operations 75 errors 

Assuming that the system is intended to support multiple missions, the estimated annual 
maintenance effort (derived from Table 6-4) is 3 1 staff-months. 

Finally, the cost of support activities can be derived fiom Figure 6-7. Table 6-6 shows the 
estimated cost of the documentation effort. 

Exam& ZZ: 
Project Dynamics 

Goal: Determine the espeeted growth rate. change rate, and error 
rate of source code. 

Measures needed: Project size estimate, models, and relationships. 

(See Sections 2.1 and 6.1.) 

The project manager introduced in the previous example can use models derived from 
historical data to project the expected rate of source code growth, as well as the expected 
change rate and error rates of th.e software. Each new project will always strive to attain 
lower error rates; however, uniil those lower rates are packagtd into new organizational 

SEL-94-002 88 



models, the manager should use the current histwical models. Figure 6-12 illustrates the 
planning charts derived from the models discussed in Section 6.1. 

Growth Rate 

% of Schedule 

Change Rate 

1,200 - 
1.050- 

900- 

g: 
P m -  8 600- 

450 - 
300- 

150 - 
10 20 30 40 50 a, 70 80 80 100 

% of Schedule 1 

Figure 6-12. Planning Project Dynamics 

Estimating the final software size is the most understood and useful basis for project 
planning, and the basic historical models derived during the understanding stage of a 
measurement program are the most important planning aids. As an organization completes 
more detailed analyses of the local environment, additional models will provide even more 
accurate planning data. Such parameters as problem complexity, team experience, 
maturity of the development environment, schedule constraints, and many others are all 
valid considerations during the planning activity. Until the measurement program provides 
some guidance on the effect of such parameters, project planning should rely primarily on 
lines of code estimates, alcng with h e  basic historical models. 

6.2.2 Assessing Progress 

A second important management responsibility is to assew the progress of the development and 
maintenance acLAvity. Project managers must track the activities and inkrpret any deviations from 
the historical models. Although experience is the best asset for carrying out this responsibility, 

89 SEL-94-002 



several measures are helpful. The standard earned-value systems, which aid in analyvng the rate 
of resouices consumed compared to planned completed products, are effective for supporting 
progress trtlcking. Along with earned-value techniques, other software measures can provide 
additional insights into development progress. 

Eranrple 12: 
Tracking Code W u c t i o n  

God: 

.Measures needed: 

fitermine whether devebpment is progtwssing as expected 

Biweekly count of source lib- size, manager’s uplizted 
&completion estimates. 

(See Section 4.4.) 

An ar ,lysis of historical data enables the derivation of such profiles as the expected rate of 
code growth in the controlled libnry (see Figure 6-11). Using such a model, a project 
masager can determine whether code production is proceeding normally or is deviating 
from the expected range of values. As with other models, a project’s deviation from the 
growth-rite mdc l  simply means hat the project is doing something differently. For 
example a project reusing a lape amount of existing code may show an unexpectedly 
sharp jump early in the code phase when recsed code is placed in the configured library. 
Figdre 6-13 shows an example in which cod: growth made several jumps resulting from 
reuse but then foflowed the model derived for h e  local environment. 

Goal: Lktemine whether requirements (ULd &sign are stable. 

Measures me&d C h g e s  to s o m e  code d mmager’s project estimates. 

(See Section 4.4.) 

By tracking the changes made to the coatroiled souwe library, a rnmager can identify 
unstabie requirements or design. Plotting the behavior cf a current pojest’s change rate 
zgaitist ihe orgsnization’s predictive model indicaps whether the project is on track or is 
deviating. Exaggerated flzt spots (periods without changes) or large jamps !many changes 
made i:t the same time) in the data should raise flags for fufJ;er invesdgation. Some 
deviations m y  be readily explained; for example, during tes:ing, ckanges are often 
grouped and incorporated into the configured software at the same time, thus causing a 
large jump in the weekly change rate. 

SEL - 94-OO2 90 



I I 
I I 

1 . 1 . 1 1 1 . 1 . 1 .  

0.00 

10 20 30 40 50 60 70 80 90 100 

x of ScherhIle 

- . . . I . I  l . 1 . I .  

Figure 6-13. Growth Rare Deviation ’ 

~ 

Demn 

Figure 6-14 presents an example from actual data for a project that experienced a higher 
than normal change rate. The requirements for this 130-KSLOC system were highly 
unstable, resulting in a deviation from the existing model (introduced in Figure 6- 12). By 
recognizing the change rate early, managers could compensate by tightening CM 
procedures to maintain the quality and the schedule. 

Syst0i Aaeptam 
c d d r e s t  Test Test 

10.00 

9.00 

8 8.00 

d 
ti 
E 

Y 7.00 

yl 6.00 

2 5.00 
V 

g 4.00 - 
3 

E, 3.00 
V 

2.00 

1 .OO 

~ ~ 

Figum 6-14. Change Rate Deviation 

91 SEL-94-002 



Example 14: 
Tracking SkaflEflort 

Goal.- 

Measrures needed. 

Deternrine whether replanning is necessary. 

Idhlpmjec t  pkur a d  weekly efiort drtta. 
(See Sections 4.1 and 4.4.) 

By using the expected effort distribution and staffing profile over the life-cycle phase;, a 
manager can predict the total cost and schedule based on the effort spent to date. If more 
effort than was planned is required to complete the design of a system, the remaining 
phases will probably require proportionately more effort. After determining why a 
deviation occurred, a manager can make an informed response by adjusting staffing, 
increasing the schedule, or scaling back functionality. 

Deviations in effort expenditures can also raise quality flags. If all milestones are being met 
on an understaffed project, the team may appear to be highly productive, but the product 
quality may be sufkring. In such a case, the manager should not automatically reduce 
effort predictions. An audit of design and code products, using both effort data and error 
data, can support an informed decision about whether to add staff to compensate for work 
not thoroughly completed in earlier phases. 

Figure 6-15 presents an example of the use of measurement data in monitoring a project to 
determine whether replanning is necessary. Effort data were a key factor in management’s 
detection and correction of several problems that would have jeopardized this project’s 
eventual success. 

SEL-94-002 92 



The original staffhg plan was based on an underestimation of the system size. Toward the 
end of the design phase, 40 percent more effort than planned was regularly required, 
indicating that the system had grown and that replanning was necessary. Although the 
manager's estimates of size did not reflect the significant increase, the staffing profile 
indicated that the system was probably much larger than anticipated. The required effort 
continued to grow, however, in spite of the new plan that projected a leveling off and then 
a decline. A subsequent audit revealed that an unusually high number of requirements 
were still unresolved or changing, resulting in excessive rework. As a part of the 
corrective action, a second replanning activity was needed. 

&ample 15: 
Tracking Test Progress 

G o d  Detennine whetherthe tedngphase isprogtessingas 

Measures nee&& 

expected 

Failum mpud data and change data 

(Spe Section 4.2.) 
-- 

By consistently tracking reported versus fixed Cimpancies, a manager gains insight into 
software reliability, testing progress, and staffing problems. The open failure reports 
should decline as testing progresses unless the project is understaffed or the software has 
many defects. 

When the "open" curve falls 
below the "fixed" curve, defects 
are being corrected faster than 
new ones are reported. At that 
time, a manager can more con- 
fidently predict the completion 
of the testing phase. Figure 6-16 
shows an example of discrep- 
ancy tracking that gave the 
manager an early indication of 
poor software quality (at Week 
15). Staff members were added 
to increase the error-comtion 
rate (during Weeks 20 through 
35). and the system attained 
stability (at Week 35). 

Figum 616. Tmcklng D i a c ~ n c l e s  

93 SEL-94-02 



Goal= 
Measrues nee&& 

DeterPnine the qwlity of the sofiare. 
Error report dater, hktorktal nmdkls, and size estinurtes. 

(See scctionS 4.2,4.4,5.3.3, d6 .1 .3 . )  

One commonly used measure of software quality is the software error rate. Tracking the 
project's error rate against an organization's historical model can provide a simple 
estimate of the predicted quality of the delivered software. A consistent understanding of 
what to count as an error enables the organization to make reasonable predictions of the 
number of errors to be uncovered, as well as when they will be found. 

The model in Figure 6-8 indicates that detected errors were reduced by half in subsequent 
phases following coding and unit testing. By estimeting the total size of the software and 
by tracking the errors detected during the coding and unit testing phase, the project 
manager can both observe the quality of the existing system relative to the model and also 
project the quality of the delivered software. 

Figure 6-17 is another view of the same model showing the cumulative errors detected 
throughout the life cycle (see also Figure 5-7). The model compares error rates reported 
during the coding and early test phases of an actual NASA project. The error rate can 
deviate from the model for many reasons, including the possibility that the development 
team is not reporting 
errors. However, it is 
still worthwhile to track 
the errors and to assume 
that the information is 
reasonably reliable. The 
example indicates that 
the projected quality or 
reliability (based on the 
predicted error rate) is 
an improvement over the 
average local project; 
indeed, in this case the 
project turned out to be 
an exceptionally reliable 
system. 

Schedule 
- -  

Figure 617. Projecting SofhKen, Quality 

$EL-94-002 94 



6.2.3 Evaluating Processes 

A third responsibility of the software manager is to determine whether the project’s standard 
software processes are, in fact, being used, and if there is any impact on the product. Project 
personnel may fail to apply a standard process because of inadequate training. team inexperience, 
misunderstandings, or lack of enforcement. Whatever the reasons, the manager must try to 
determine whether the defined process is being used. 

Example 17: 
Source Code Growth 

coal= Lktemine whether the Cleanroonr method is being applied 

Measures nee&& Pmjectphase date estimates? completed source code? and 
historical models. 

(See Section 4.4.) 

One characteristic of the Cleanroom method is an increased emphasis on source code 
reading before the code is released for system integration. This emphasis can be confirmed 
by tracking the source code growth a d  observing two phenomena: 

1. A delay in the phasing of the code completion profile 

2. A significant step function profile of the code completion -?te caused by the strict 
incremental development of Cleanroom 

The sample plot in Figure 6-18 i s  based on actual data from an organization’s first use of 
the Cleanroom method. The data 
exhibited both expected phenomena, 
suggesting that the Cleanroom method 
was indeed part of the project process. 
Such measurement analysis is useful 
only to identitjt occasions when 
expected differences do not occur, so 
that the manager can try to determine 
the cause. 

Ry tracking the values of process 
parameters, the manager can determine 
whether the process is helping to attain 
the organization’s goals. If not, the 
manager should consider changing the 
process. The following section 
disclrsses using measurement to guide 
process improvement. 

Figum 6-18. /mpsct of the Clesnroom Method 
on Software Growth 

95 SEL-94-002 



6.3 Guiding Improvement 
One key reason for software measurement is to guide continual improvement in the organization’s 
products and services. The same measurement activities that support understanding and managing 
can provide a basis for improvement. 

To be able to assess how a process change affects a product, the manager must measure both the 
processes applied and the products developed. Two key analyses must be performed: 

1. Verify that the process tinder study shows the expected measured behavior (either 
changed or similar to other processes). 

2. Compare ongoing activities with the baseline measures developed to establish an 
understanding. 

A specific innovation may result in many changes to process elements, some helpful and others 
not. Experience on subsequent projects is needed to adapt the process change to an environment. 
The types of adaptations include the following: 

0 Eliminate processes that provide little or no value. 

Accentuate processes that help. 

Determine the impact of specific techniques. 

0 Write new policies, standards, and procedures. 

0 Tailor processes for specific needs. 

The two cxamples in this section illustrate the application of measurement for guiding 
improvement. 

Example 18: 
Cleanroom 

Assume that an organization’s goal is to decrease the error rate in delivered software 
while maintaining (or possibly improving) the level of productivity. The organization must 
understand the current software engineering process, using historical data to establish a 
baseline for its error rate and productivity measures. 

In this example, the organization has decided to change the process by introducing the 
Cleanroom method (see Reference 13). Cleanroom focuses on achieving higher reliability 
by preventing defects. Because the organization’s primary goal is to reduce the error rate, 
there is no concern that the Cleanroom method does not address reuse, portability, 
mainQinability, or many other process and product characteristics. 

As the organization develops new products using the modified process, which 
incorporates the Cleanroom method, it must continue to collect data for both process and 
product measures and look for possible changes. Keep in mind that a change is not always 
an improvement; it must be possible to measure two things: (1) that a diffewnce exists 
between the. original and the changed product and (2) that the new product is better than 
the original. Table 6-7 lists the measures that are important indicators for this example and 

SEL-94-OG2 96 



summarizes their usage. Other software process and product characteristics, such as 
schedule, maintainability, and amount of reuse, may also reveal deviations beyond the 
expected baseline ranges. Such deviations must be investigated to determine whether the 
effect is related to the introduction of the Cleanroom method. 

Table 6-7. Indicators of Change Attributable to Cimnmom 

Measure 

cost 

Effort 

Effort 
distribution 

Site 

Software 
size 

Size growth 

Number of 
Errors 

-- 
Type 

Product 

ProcesS 

Product 

-- 

Process 

Product 

Indicator 

Expectation: Cleanroom should not 
decrease productivity. 

Expectation: Cleanroom may show 
increased design time. 

Expectation: Cleanroom should have no 
impact. 

Expectation: Cleanroom may affect 
measured profile. 

Expectation: Cleanroom should increase 
reliability. 

To observe changes, the organization must analyze the measurement data at regular 
intervals during the Cleanroom development period and compare the results with the 
baseline. For example, Figure 6-1 9a compares the results of measuring development 
activities on several SEL projects that used the Cleanroom method against the current 
baseline activity profile in the same organization. The slight changes in the effort 
distribution profiles suggest that the new method may have affected the development 
process, but the difference in percentages is not conclusive. A closer look (see Figure 
6-19b) at the subactivities within the “code” category reveals more substantial differences 
and provides clear evidence of an impact on the relative percentages of the code writing 
and code reading processes. 

During the Cleanroom experiment (see Reference 14). the SEL also compared another 
measure, software size growth, with the baseline. Figure 6-18 illustrates the markcd 
differences between the profiles. The Cleanroom profile exhibits a more pronounced 
stepwise growth pattern, which results from the higher number of software builds required 
by the Cleanroom method. Whereas developers typically used two or three builds on 
projects that made up the baseline, they used from five to eight builds during the 
Cleanroom experiment. 

97 SEL-94-02 





Table 6-8. Impact of the Cleanroom Method on Reliability and Productivity 

Baseline 

Cleanroom 1 

5.3 26 

4.3 40 

Cleanroom 3 

2. Product measures can quantify the impact (positive, negative, or none) of a new 
technology on the product. 

Both types of measures can then be used to model the new process and expand the 
experience baseline. 

20 6.0 I 

Example 19: 
Independent Verifiatbn 2nd Validation 

Not all process changes result in measured product benefits. In 1981, the SEL studied a 
testing approach using an independent verification and validation CIV&V) process. IV&V 
promised to improve error detection and correction by finding errors earlier in the 
development cycle, thus reducing cost and increasing 0vc:rall reliability with no negative 
impact on productivity. Determining the effect of this tcsting process on reliability and 
cost were two major study goals. Table 6-9 lists the measures that are important indicators 
for this example and summarizes the use of each. 

Measurement analysts selected two projects for IV&V study -,id two similar ones for use 
as baseline coinparison efforts. For this study, the activities performed by the IV&V team 
included the following: 

0 Verifying requirements and design 

0 Performing independent system testing 

0 

0 Reporting all findings 

Ensuring consistency from requirements to testing 

The next series of figures shows the measured results of the study. 

99 SEL-94-002 



Table 6-9. Indicators of Change Attributable to IV& V 

Measure 
~~ 

Cost 

Effort 

Effort 
distribution 

Staffing 
profile 

Errors 

Number 

Source 

~ 

Product 

Process 

Process 

Product 

Process 

lndicator 

Expectation: Cost of IV&V effort would be offset by 
reductions in error correctim effort and decreases in 
system and acceptance test effort. 

Expectation: IV&V process would shcw increased 
effort in early phases. 

Expectation: Greater startup staffing for IV&V would 
affect profile model. 

Expectation: IV&V process would increase 
reliability. 

Expectation: The number of requirements and 
design errors found in later phases would decrease. 

Figure 6-20 illustriites the effect of IV&V on requirements and design errors. 
Requirements ambiguities and misinterpretations were reduced by 87 percent. The results 
show relatively little effect on design errors, however, especially on complex design errors. 

Baseline IV&V 

Requirements Functional 

Simple: Design 92% 'a 70% 

Complex: 18% Complex: 22% 

Figure 6-28. Impact of IV&V on Requirements and Design E m r s  

Figure 6-21 depicts the percentage of errors found after the start of acceptance testing. 
The IV&V projects exhibited a slight decrease in such errors but showed no significant 
increase in the early detection of errors. 

SEL-94-002 100 



I 20% 
2 0 -  

18 - 
16 - 
14 - 

g 12 - 
10 - 

0 
a? 8 -  

8 -  

4 -  

2 3  

16% 

I 
1 

Basdine IVhV 

Figure 6-21. Percentage of Errors Found After Starting Acceptance Testing 

Figure 6-22 shows the error rates by phase; the rates in the operations phase are the key 
indicators of IV&V effectiveness. The baseline error rate during operations is 0.5 errors 
per KSLOC; however, the error rate for the IV&V projects was slightly higher. 

12 

11 

to 

9 

a 
8 
$ 7  

k 6  

: s  

Y 

!? 

W 

4 

3 

2 

x IVBVPrOjaCtl 

0 
CodeNm Test System Test Acceptance Test Opwabons 

Figure 6.22. IV& V Error Rates by Phase 

The final indicators for this experiment were effort distribution and overall cost. Figure 
6-23 shows that process change in the effoit distribution by phase did occur with the 
IV&V projects. According to expectation, developers' design effort slightly decreased; 
however, the substantial increase in coding and unit testing was somewhat surprising. 

101 SEL-94-002 





Chapter 7. Experience-Based Guidelines 

rrrrr- 

Chapter Highlights I 
I 

MEASUREMENT GUIDELINES 
d The goal is applir- don of results, not data collection. 

@ The focus should be on self-improvement, not external 

d Measurement data are inexact 

d Interpretation is limited by analysts’ abilities. 

d Measurement should not threaten personnel. 

d Automation of measurement has limits. 

! J  I i 

comparison. 

i 

103 SEL-94-002 



he following guidelines are precadtionary notes for any softway organization that plans 
to ixlude softwere measurement as part of its developmerx process. Some of these T guidelines have been repeated several times throughout this document. Although some 

may Seem counterintuiti\’e. each has been derived from the experiences of extensive, mature 
measurcmcnt programs. 

Guideline I :  
Data collection should nut be the dominant element of process J improvement; application of measures is the goal. 

Focusing on collecting data rather than on analyzing and applying the data wastes time, effort, and 
energy. Although many organizations are conviiiced that measurement is a Jseful addition to their 
software development and maintenance activities, they do not fully pian for the ~i 2. benefits, and 
applications of the collected measures. As a result, the measurement program focuses on defining 
the list of measures to be collected and the forms that will be used to collect the Gata, rather than 
on the specific goals of the measurement efforts. 

Having specific and clearly defined goals facilitates the task of determining which data are 
required For example, if a goal is to determine error class distribution characteristics for each 
phase of the software life cycle, then data must be gathered on what classes of errors occur in 
what phases. 

Experience in major mature measurement programs has shown that at least three times as much 
effort should be spent on analyzing and using collected data as on the data collection process 
itself. Focusing on data collection is a common mistake, similar to that of focusing on the 
development of “lessons learned” from software efforts rather than on applying previous lessons 
learned. More software lessons-learned reports are written than are ever rzad or used. 

Software developers who are asked to collect data have the right to know how the data will be 
used and how that use will benefit their organization. Plans for analysis and application of the data 
must be well developed befo.-e the collection process is initiated. A measurement Frogram that 
focuses on the collection, as opposed to the application, of the measurement data will fail. 

Guideline 2: 
The focus of a measurement program must be self improvement, not J external comparison. 

Bscause the primary reasons for measurement are to guide, manage, and improve within specific 
software domains, the analysis and use of any measurement information must logically focus on 
local improvement. Little emphasis should be placed on comparing local results and information 
with that from other domains, because combining data across dissimilar domains rarely produces 
meaningful results. In fact, organizations rarely define specific goals requiring external 
comparison. 

SEL-94-002 !04 



There are two significant corollaries to this guideline: 

1. Define standard terminology locally instead of generating widely accepted standard 
definitions. For example, provide a standard local definition of a line of code, because 
there is no universally accepted definition. 

2. Use measurement data locally. Combining measurement data into larger, broader 
information centers has never proved beneficial and consumes unnecessary effort. Focus, 
instead, on producing higher quality, local data centers. 

Guideline 3: J Measurement data are fal6ble, inconsistent, and incomplete. 

Measurement programs that rely significantly on the high accuracy of raw software measurement 
data are probably doomed to failure. Because of the nature of the measurement process and the 
vast number of uncertainties that are part of it, the measurement data will always be inexact. 

Relying primarily on the statistical analysis of the data collected for software development is a 
serious mixdce Collection of measurement data is one small component of the overall set of 
factors required to analyze software and software technologies effectively. The following 
additional factors must be considered: 

Sutjective informution-The general observations and assessments of developers, 
managers, rnd analysts are as vital as the objective data collected via forms and tools. 

Context of the information-Each set of data must be analyzed within a well-understood 
and defined context. Attempting to analyze larger and larger sets of measurement data 
adds to the confusion and difficulty of putting each set of data in its appropriate class of 
interpretation. 

Qualitative analysis-Because of the ever present danger that measures are erroneous, 
biased, or missing, each analysis and application of measurement data must include an 
analysis of the quality of the information. The measurement data characteristics must first 
be determined by analyzing patterns, inconsistencies, gaps, and accuracy. Any 
interpretation of measurement data results must include compensation for the quality of 
the data. 

Defined puls-Successful analysis of available data requires that the analyst fmt 
understand the goais that motivated the data collectioc. By understanding the goals of the 
measurement efforts, an analyst can interpret data gaps, biases, definitions, and even levels 
of accuracy. The goals will significantly influence the quality, consistency, and level of 
detail of the data analysis. 

Because of the limited accuracy of measurement data, overdependence on statistical analysis of 
these data can lead to erroneous conclusions and wasted efforts. Although statistical analysis is a 
poweiful mechanism for determining the strengths and weaknesses of collected measures and 
providing insight into the meaning of the data, it must be used as only one limited tool toward the 
goal of meaningful application of measurement data. 

1 05 SEL-94-02 



Another potential pitfall exists in the use of subjective data to characteiize software development. 
Many measurement programs attempt to characterize the processes of each development project 
by recording a rating factor for several process elements such as “degree of use of modem 
programming practices.” “experience of the team,” “complexity of the problem,” or “quality of 
the environment.” Although successful analysis of measurement data must consider the context, 
problem, domain, and other factors, extensive studies within NASA measurement programs have 
repeatedly failed to show any value in analyzing such rating information. Because there are many 
inconsistencies in the definition and interpretation of terms such as ”problem complexity’, or 
“madern programming practices” and because of the inconsistencies in the value judgments of the 
people doing the ratings, the use of measurement data should be Limited to providing a general 
understanding of the project--nothing more. 

J limited by the abilities of the analysts. 

Measurement data must be interpreted properly to provide meaningful results. For example, if an 
analyst cannot clearly and precisely define “software complexity,” then no tool or measure can 
determine if software is too complex. There is a danger in expecting that a large amount of data 
combined with some software tool will provide a manager or analyst with a clear representation of 
software quality. The data and tool can represent only what the manager or analyst interprets as 
quality. 

Inexperienced measurement programs occasionally assume the existence of a generally accepted 
threshold defining the boundary between acceptable and unacceptable values for some measures. 
For example, a program unit that is larger than some predetermined code size might be deemed 
undesirable. Similar thresholds are sometimes assumed for complexity, error rate, change rate, 
test failure rate, and many other measures. Establishing control limits for comparing rneasurement 
values is important, but the limits must be computed on the basis of local experience. It should not 
be assumed that there is some predefined threshold that defines an absolute boundary of 
acceptable values for local measures. 

J Personnel tieaf measurement as an annoyance, not a significant threat. 

Guideline 4: 
the capability to qualify a process or product with measurement data is 

Guideline 5: 

One of the most obvious and important guidelines for any measurement program is to emphasize 
consideration for the concerns of development and maintenance personnel. Measurement 
programs should not be used to qualify or characterize differences between individuals providing 
measurement data. If confidentiality is assured, project personnel will provide requested 
measurement information as freely as they provide other documentation or reports. 

Experience has shown that, as long as managers ensure that measurements will never be used to 
evaluate performance or rate programmers, the development and maintenance teams will treat 
measurement responsibilities as just one additional task that is a part of their job. 

SEL-94-002 106 



Guideline 6: J Automation of measurement has limits. 

DBMS tools 

CM tools 

Nearly every measurement program starts with two well-intentioned goals: 

1. Measurement will be nonintrusive. 

Store, validate, and retrieve icformation 

Provide counts of changes to source code 

2. Measurement will k automated. 

Operating system 
accountins tools 

The process of measurement, however, cannot be totally automated. Essential human processes 
cannot be replaced by automated tools unless the measurement program is limited to a high-level 
survey activity, because the opinions, insight, and focus of individual programmers and managers 
are necessary to carry out effective measurement programs. 

Tools can automate a limited set of routine processes for counting such measures as code size, 
code growth, errors, and computer usage; however, insight into the reasons for errors, changes, 
and problems requires human intervention. Without that insight and the verification of 
measurement information, collected data of limited value. 

Provide computer usage data 

One NASA organization with a mature measurement program uses the automated tools listed in 
Table 7-1. 

T&/e 7-1. Examples of Automaded hfeasurement Support Tools 

d3 Code analyzers Record code characteristics at project 

l iJs same organizatic 1 has found that many other measures must be compiled manually; some 
examples are listed in Figure 7-1. 

Even a well-defined and focused measurement program requires manual intervention. Because the 
team provides only the limited amount of information needed to satisfy the organizational goals, 
however, the measurement program will have a correspondingly limited intrusive impact on the 
development and maintenance organization. 

107 SEL-94-002 





Appendix A. 

Name 

Change Report Form 

Component Origination I Form 

Sample Data Collection Forms 

purpose 

Records information on changed units; is filled out each time a 
configured unit is modified 

Provides information on software units as %ey are entered into the 
project's configured library 

T 

Development Status Form 

his appendix contains many of the data collection forms that are used within the NASA 
GSFC SEL measurement program. Reference 19 provides a detailed guide to using all of 
the SEL forms. An organization estabiistmg a new measurement program may want to 

base its own set of forms on the samples. Table A-1 summarizes the purpose of the forms, which 
appear in alphabetical order on the following pages. 

Provides a record of the current status of the project parameters; is filled I 
out by the project manager on a regular basis I 

Table A-1. SEL Data Collectfon Fonns 

Maintenance Change 
Report Form 

Personnel Resources Form 

Characterizes the maintenance performed in response to a change 
request 

Provides information on hours spent on a prqect and how the effort was 

Project Completion 
Statistics Form 

Project Estimates Form 

Project Startup Form 

Records final project statistics 

Records the completion estimates for project parameters; is filled out by 
project managers 

Records general project information collected at the prqect startup 
meeting 

ServicesProducts Form 

Subjective Evaluation Form 

Subsystem Information 

Records use of computer resources, growth history, and services effort; 
is completed weekly 

Records opinions that characterize project problems, processes. 
environment, resources, and products 

Provides subsystem infomation at preliminary dasign review and 

Weekly Maintenance Effort I Form 

109 

Records hours expended on maintenance activities 

SEL-94-02 



CHANGE REPQRT FORM 

Type of Change (Check one) 
0 Errorcorrection 0 Optimrnonoftirnspa@ 
0 Planned enhan~emen: =w 
0 lmplementatlon of reqlnrements 0 to emironme* 

0 I Y O f d a n t y .  

0 lmpmvement 01 user services 
0 Insertddelet~on of debug code 

cclanae 
0 Other (Describe below) 

change 

maintamab~ly. or doarmentation 

Name: nppr- by: 

Project: Date: 

Effects of Change 
Y N  a ~wasthechangeor~ont0oneandon)yone 

component? (Must match Effed in Section A) 

0 ODid you look at any other component? (Must 

0 Did you have totmaware of parameters p a ~ e d  

match Effort in Sect~on A) 

e- or impliciUy (e.g , COMMON blocks) to or 
hwnthedlangedcompooents? 

I Section A - Identification 
I Describe the changs: (What, why, how) 

Effect What components are changed? Eflort: What additional components 
were examined in daennining 
what change was needed? 

(Attach list if more space is needed) 

Location of developer's source files: 

Need for change cktermined on: 
Change complsted (incorporated into system): 

Effort in person time to isolate the change (or error): 
Effort in person time to implement the change (or correction): 

check here if change lmr0hres 
Ada components. (If so. complete 
questions on reverse side.) 

I JANUARY l9S4 

Br Corrections Only 
Class of Error characteristics 

(Check most applicable)' (Check Y or N for all) 

Figure A-1. Change Report Form (1 of 2) 

SEL-94-002 110 



CHANGE REPORT FORM 
Ada Project Additional Information 

1. Check which Ada feature@) was involved in this chaflge (Check all that apply) 
0 Datatyping 0 Program structure and packaging 

Subprograms 0 Tasking 
0 Exceptions 0 Systemdependentfeatures 

(e.g., 110, Ada statements) 
0 Generics 0 - r . P - - s p e c L  

2 For an emr  involving Ada compmenw 

a Does the compiler documentation or the language WN) 
reference manual explain the feature clearly? 

b. Which of the following is most true? (Check one) 

0 Uriderstood features separately but not interaction 

0 Understood features, but did not apply correctly 

0 Did not understand features fully 
0 Confused feature with feature in another language 

c. Which of the following  sources provided the information 

needed to correct the error? (Check all that apply) 

0 Classnotes 0 Ownmemory 

0 Ada reference manual 0 Someonenotonteam 

Own project team member 0 Other 

d. Which tools, if any, aided in the detection or correction of this error? (Check all that apply) 
Compiler [7 SaurceCodeAnalyzer 

Symbolic debugger 0 P&CA (Performance and Coverage Anafyzsr; 
0 Language-sensitive ediior [7 DECtestmanager 

0 CMS c] Other,specify 

3. Provide any other information about the interaction of Ada and this change 
that you feel might aid in evaluating the change and using Ada 

1 
NOVEMBER 1 W l  

Figure A-1. Change Report Form (2 of 2) 

1 1 1  SEL-94-002 



Identification 

Name: 

Project: Date: 

Subsystem Prefix: 

Component Name: 

Configuration Management Information 
Date entered into controlled library (supplied by configuration manager): 

Library or directory containing developeh source file: 

Member name: 

Relative Difficulty of Developing Component 
Please indicate your judgment by circliny one of the numbers below. 

ESY Medium Hard 
1 2 3 4 5 

Origin 
If the component was modified or derived from a different project, please indicate the 
approximate amount of change and from where it was acquired; if it was coded new (from 
detailed design) indicate NEW. 

Number: 

Date:-___- 

Entered by: __ 

NEW 
- Extensively modified (more than 25% of 

statements changed) 
Slightly modified 
Old (unchanged) 

If not new, what project or library is it from? 
Component or member name: 

Type of Component 
- -  INCLUDE file (e.g., COMMON) 

Control language (e.g., JCL, DCL, CLIST) 
ALC (assembler code) 
FORTRAN source 
Pascal source 
C source 
NAMELIST or parameter list 
Display identification (e.g., GESS, FDAF) 
Menu definition or help 
Reference data files 

(Check one only) 

BLOCK DATA file 
Ada subprogram specification 
Ada subprogram body 
Ada package specification 
Adapackagebody 
Ada task body 
Ada generic instantiation 
Ada generic specification 
Ada generic body 
Other 

Purpose of Executable Component 
For executable code, please identify the major purpose or purposes of this component. 
(Check all that apply). 

I/O processing Control module 
Algorithmidcomputational Interface to operating system 
Data transfer Process abstraction 
Log iddecision Data abstraction 

DVEMBER 1991 

Figure A-2. Component Origination Fom 

SEL-94-002 112 



DEVELOPMENT STATUS FORM 

Name: 
Project: Date: 

Please complete the sectton(s) Mat )9 appropnate for the current status of the project. 

I Design Status I 
- ~~ ~~ 

number of components to be designed 
(New, m o d i .  and reused) r- 1 
Number of components designed 
(Prolog and PDL have been completed) I 

I W e  Status 1 
Planned total number of amponants to be coded I (New, modhed. and r e d )  

Number of componen*, completed 
(Added to controlled library) I 

~~ I Tesbng Status 1 systemTest ~ I AcceptanceTest I 
I Total number of separate tests planned I I I 

Number of tests executed at IecW one time 

Number of tests based I I I 

D m p a n c y  Tracking Status (from beginning of system test~nq) 

I Total number 01 dscreoanaes W e d  

Total number 01 drsaepanaes resdved I 
I Specification M o d i t i o n  Status (from beginning of requirements analyss) I 

Total number of specificatuon m o d E c a m  received 
Total number of speaficatlon m o d i o n s  completed (implemented) 

I I 
- 

Requimments Queshons Status (front beginning of requirements anatyss) 
~ ~~ ~~~ ~ 

Total number 01 questionisubmilled to andysts 
Total number of questms answered by analysts I I 

For Libranan's Use Only 
are no changes 

Number: 
Date. 
Entered by 
Ch0cked by: 

OVEMBER 1991 

Figura A-3. Development Status Form 

113 SEL-94-002 



MAINTENANCE CHANGE REPORT FORM 
Name: OSMR Number: 

Project: Date: 

SECTION A Change Request Information 
Functional Description of Change: 

For Ltbranens Use Only 

Number - 
Date 
Entered by 

a - w  

What was the type of modification? 

- Correction 
- Enhancement 
- Adaptation 

Estimate effort spent isolatingldetermining the change: 
Estimate eftort to design, implement, and test the change: 

What caused the I :hange? 
- Requiremenwspacmcations 

-- Sottwaredesign -- 
- Pm$ous change 
- Other 

I I I I I 

SECTION B: Change Implementation Information 

Components AddedEhangadlDeleted: 

~~ ~ ~~~ 

Check all changed objects: 

- RequirementslSpecifications Document 
- Design Document 
-code 
- SysremDescription 
- Umr'sGuide 
- Other 

If code changed, characterlza the change (check most 
applicable): 
- lnltialization 
- Logic/~ntr0lstruchmt 

- Interface (internal) 

- Interface (external) 

- Dam (value or structure) 

- Computational 

- Other hone of the above emlv) 

(e.g., changed flow of control) 

(module to module communication) 

(module-toaxternel communication) 

(e.g., variable or value changed) 

(e.g., change of math expression) 

Estimate the number d lines of code (including c o m m t s ) :  

Enter the number of components: - 
Enter the number of the added components that am: 

- - 
added changad deleted 
- 

added changed dedeted 

mtaiiy n m  totaiiy m u d  mused 
modmcations 

DVEMBER 1991 

Figure A-4. Maintenance Change Report Form 

SEL-94-002 



Personnel Resources Form 
Name: - 

Project: Date (Friday): . 

ActNQ 
Pmdesign 

Create Desgn 

SECTION A: Total Hours Spent on Project for the Week: 
SECTION 8: Hours By Activrty (Total of hours in Seciion B should equal total hours in Section A) 

Actnrity Definitions Hours 
Understanding the concepts of the system. Any work pnor to the actual design (such 
as requirements analysis). 

Development of the system, subsystem, or components design. Includes development 
of PDL, design diagrams, etc. 

h ! a i n g  

Integration Test 

I Readmeview Design Hours spent reading or reviewing design. Includes deslgn meetings, formal and informal I reviews, or walkthroughs. 

Hours spent finding a known error in the system and developing a solution. Includes gen- 
eration and execution of tests associated with finding the e m .  

Writing and executing tests that integrate system components, including system tests. 

Write code I Actually coding system components. Includes both desk and terminal code development. I I 
~ ~~ 

Readmeview Code I Code reading for any purpose other than isolation of errors 1 -  I 
Test Code Units I Testing individual components ofthe system. Includes wnting test drivers. I I  

Acceptance Test I Runningkupporting acceptance t&ng. I I  
-1 -  I ~~ ~~ - -~ - ~~ 

I other hours spent on the project ,iot covered above. Includes management, meetrngs, I 

~ 

m e r  I training hours, notebooks, system descnptrons, user's guides, etc. - I 1 
SECTLN C: Effort On Specific Activities (Need not add to A) 

R e m  Estimate of total hours spent that were caused by unplanned changes or errors. Includes 
effort caused by unplanned changes to specifications, erroneous or changed design, errors or 
unplanned changes to code, changes to documents. (This includes all hours spent debugging.) 

code, or documemon. These are not caused by required changes or errors in the system. 

prdogs. in-line comrnentaly, test plans, system descriptions, user's guides, or any other system 
documentation. 

system(s) design, code, or documentation. Count total hours in searching, applying, and testing. 

(Some hours may be counted in more than one area; view each act* separately) 

0 
EnhancinglRefininglOptimizing: &mate of total hours spent improving the efficiency or clarity of design, or 

Documenting: Hours spent on any documentation of the system. Includes development of design documents, n 
Reuse: Hours spent in an effort to reuse components of the system. lndudes effort in looking at other I 

JOVEMBEA 1991 

Figure A-5. Personnel Resources Form 

115 SEL-94-02 



Personnel Resources Form 

Actnnty 
Predesign 

(CLEANROOM VERSION) 
Uame:. 

'role&-- Date (Friday): 

Actnnty Minitions I Hours 

I I  Understanding the concepts of the system. Any work prior to the actual design (such 
as requirements analysis). 

SECTION P.: Total Hours Spent on Project for the Week: 
SECTION B: Hours By Activity (Total of hours in Section B should equal total hours in Section A) 

Pretest 

Create Design 

VenfylReview Design 

Developing a test plan and building the test environment. Indudes generating test cases, 
generating JCL, compiling components, building libraries, and defining inputs and 
probabilies. 

Development of the system, subsystem, or components desgn. Includes box structure 
decomposflion, stepwise refinement development of PDL, desgn diagrams, etc. 

Includes design meetings, formal and informal reviews, and walkthroughs. 

Write Code 

ReadlReview Code 

Actually coding system components. Indudes both desk and terminal code development. 

Code reading for any purpose other than isolation of emrs. Includes venfylng and 
reviewing code for correctnes, 

Response to SFR 

Acceptance Test 

Other 

SECTION C: Effort On Specific Activities 

Isdabng a tester-reported problem and developing a solution. Indudes wnbng and 
reviewing design or code to d a t e  and correct a tester-reported problem. 

Runningkuppotting acceptance tesbng. 

Other hours spent on the project not covered above. Indudes management, meehngs, 
training hours, notebooks, system descriptions user's guides, etc. 

Methodology Understandngllliswssion: Estimate the total hours spent learning, discussing, reviewing or 
attemptmg 10 understand deanroom-related methods and techniques. Indudes all time spent in training. 

F G f ~ S u S a O n r y  

Numbgf 

m -  
Mdbv 
c-bl 

JVEMBER 1991 

Figum Ab.  Personnel Resources Form (Cleanroom Version) 

SEL-94-002 116 



PROJECT COMPLETION STATISTICS FQRM 
Name: - 
PfDjt3Ct: - Date: 

Phase Dates (Saturdays) I 
Phase I Start Date 

i 

I Staff Resource Statistics I 
Technical and 
Management Hours 

Computer Resource Statistics 

I I 

Project Size Statistics 

Generai Parameters I source Linesof code 

I Number of components I I New I I 

New I I New ! I New I I 

117 SEL- 94 -002 



PROJECT ESTIMATES FORM 

~ ~~~ ~ ~ 

Programmer Hours 

Management Hours 

Name: 

Project: 

I 

Date: 

I PhaseDates(Saturdays) I 
I phsse I smt- I 

services Hours I I 

I Project Size Estimates I 

Total 

New 
Modified 

Old 

Note: All of the values on this form are to be 
estimates of projected values at completion 

submitted with updated estimates every 6 to 
of phs project. This form should be 

8 weeks during the course of the project. 

ForLmrulmSawOn 

chsc’ 3d by: 

SEL-94-002 118 



PROJECT STARTUP FQRM 

I 

Name: 
Project: Date: 

PLEASE PROVIDE ALL AVAILABLE INFORMATION 

Project Full Name: 

Project Type: 

contacts: 

Language: I 
Computer System: - 
Account: 

Task Number: 

Forms To Be Collected: (Circle forms that appty) 

PEF PRF CLPRF DSF SPF SIF COF CCF CRF SEF PCSF WMEF MCRF 

General Notes: 

I Personnel Names (indicate with * if not in database): 

I 

119 SEL-94-002 



SERVICEWRODUCTS FORM 

Computer 

t 

Project: 

Date (Friday): 

CPU Hours No. of Runs 

COMPUTER RESOURCES 

GROWTH HISTORY 

Components 

SERVICES EFFORT 

Tech Pubs 

I ProjMgmt 

I 1 
NOVEMBER 1991 

RgUm A-10. SerViceslProducts F o ~  

SEL-94-002 120 



SUBJECTIVE EVALUATION FORM 

Name 

FOR LIBRARIANS USE ONLY I 

1 2 3 4 5 
Lease Averaga w 

Number. Entered by I 

1 2 3 4 5 
LOW Avecage w 

5. nowextanwvewsredoamentaoon . reqvrtmenb' 

1 2 3 4 5 
LOW Average High 

Date -by 

OVEMBER 1991 

121 SEL-94-002 



SUBJECTIVE EVALUATION FORM 

22. Towhat extent M Umdevekpmam team prepa-e and fallow test plans? 
1 2 3 4 5 

LOW Averege "gh 

Figure A-1 1. Subjective Evaluation Form (2 of 3) 

SEL-94-02 122 



SUBJECTIVE EVALUATION FORM 
~ ~ 

IV. PROCESS CHARAClEAlSnCS (CONTO) 

23. To what exlent dtd the dw&qmmt team u h  welMefvled and disapllned quahty assurance procedures 
(revhw.inspems . and waikthrarghs)7 

1 2 3 4 5 
LOW Average Hgh 

24. To what extent dtd development team use welcdehned of drscipllned configurclbon management 
procedures? 

1 2 3 4 5 
LOW Average High 

V. ENVlRONMENTCMARACTERSTICS 

25. HOW wculd yw chamdmm the development team’s degm of BCC~SS to the development system? 
1 2 3 4 5 

LOW Average High 

26. What was the rata d programmers btemurals? 
1 2 3 4 5 

8: 1 4: 1 2 1  1:l 1 2  

~ ~ ~~ 

Figure A-11. Subjecth Evaluation Form (3 of 3) 

123 SEL-94-002 



SUBSYSTEM INFORMATION FORM 
Name: 

Project: Date: 

Subsystem Subsystem Subsystem 
Prefix Name Function 

Old Subsystem Prefix 
(Must exist in the database) 

t 1 I 

Action 
(R - Rename, 
D - Delete) 

New Subsystem Prefix 
(Must not exist in the database) 

I 

Number: .- 

Date 

Ernered by:------.---.- 

Checkedby' - 

1 

REALTl M E: Real-time Control 
MATHCOMP: Mathema:.caVComputational 
GRAPH: 
CPEXEC: Control ProcessingExecutive 
SYSSERV: System Services 

Graphics and Speaal Device Support 

SEL-93-002 1 24 



- 
I F ~ I  Lbram's uls ( h k j  

WEEKLY MAINTENANCE EFFORT FORM 

Section 8 -Hours By Classof Maintenance CT01.tdhounh8.dbn~ mhouldrmmltmlhou8in 
(kakn Al 

ctasr I 1 Hours 

I 

Section C - H w ~  By Maintenance Acthrity (iota1 ol h m  h section c 8 k l d  equt t m t  how in 
SoUion A) 

Houn spent undemtmding the failure or request for en~s-nt 5 

Houn spent actually ndsrigning the system bated on an unde-standing 

unii TW 

Houn rpentchafiging theryrtmto comploiothenocessary changa 
This induda changing not only the code. but the sfwd.ted 
doarnnntauon. 

othsc 

NOMWER lgsl 

Flgum A-13. Weekiy Malntenance Effort Form 

125 SEL-94-002 





Appendix EL Sample Process Study Plan 

SEL Representative Study Plan for 

SOHOTELS 

October 11,1993 

1. h j e c t  Description 

The Solar and Heliospheric Observatory Telemetry Simulator (SOHOTELS) software 
de*clopment project will provide simulated telemetry and engineering data for use in testing 
the SOH0 Attitude Ground Support System (AGSS). SOHOTELS is being developed by a 
team of four GSFC personnel in Ada on the STL VAX 8820. The project is reusing design, 
code, and data files from several previous projects but primarily from the Solar, Anomalous, 
and Magnetospheric Particle Explorer Telemetry Simulator (SAMPEXTS). 
The SOHOTELS team held a combined preiiminary design review (PDR) and critical design 
review (CDR) in April 1993. In their detailed design document, the SOHOTELS team stated 
the following goals for the development effort: 

To maximize reuse of existing code 

0 Where reuse is not possible, to develop code that will be as reusable as possible 

To make sure performance does not suffer when code is reused 

2. Key Facts 

SOHOTELS is being implemented in three builds so that it can be used to generate data for 
the early phases of the AGSS (which is a Cleanroom project). Build developmerrt and 
independent acceptance testing are being conducted in parallel. At present, the test team has 
finished testing SOHOTELS Build 1. The development team expects to complete Build 2 and 
deliver it to the independent test team by the end of the week. 

SOHOTELS consists of six subsystems. As of June, the estimated total number of 
components was 435, of which 396 (91 percent) have currently been completed. Total SLOC 
for SOHOTELS was estimated at 67.6K SLOC, with 46.6K SLOC of code to be reused 
verbatim and 15.7K SLOC to be reused with modifications. As of September 13, 1993, there 
were 65.4K SLOC in the SOHOTELS system, or 97 percent of the estimated total. 

The SOHOTELS task leader is currently re-estimating the size of the system because 
SOHOTELS will be more complex than was originally predicted. The new estimates will also 
include SLOC for the schema files that are being developed. 

The phase start dates for SOHOTELS are 

September 9, 1992 
October 3, ' Y 92 

Requirements Definition 
Design 

127 SEL-94-002 



May 1,1993 
June 26,1993 
May 7, 1993 

3. CoalsoftheStudy 

Code and Unit Test 
Acceptance Test 
Cleanup 

?he study goals for SOHOTELS are 

To validate the SEL’s recommended tailoring of the development life cycle for high- 
reuse Ada projects 

To refine SEL models for high-reuse software development projects in Ada, 
specifically 
- 
- 
- Errors (number per KSLOCDLOC) 
- 
- Growth in schedule estimates and size estimates (from initial estimates to 

Effort (per DLOC, by phase and by activity) 
Schedule (duration for telemetry simulators and by phase) 

Classes of errors (e.g., initialization errors, data errors) 

completion and from PDWCDR to completion) 

4. Approach 

The following steps will be taken to accomplish the study goals: 

e Understand which of the standard development processes are being followed (per 
Reference 10) and which have been tailored for the SOHOTELS project. Ensure that 
information is entered into the SEL database that will allow SOHOTELS data to be 
correctly interpreted in light of this tailoring. 

Analyze projecthuild characteristics, effort and schedule estimates, effort and schedule 
actuals, and error data on a monthly basis while development is ongoing. 

e At project completion, plot the effort, schedule, error rate, and estirnatc data. 
Compare these plots with current SEL models and with plots from other high-reuse 
projects in Ada. Compare and Contrast the error-class data with data from FORTRAN 
projects, from Ada projects with low reuse, and from other high-reuse Ada projects. 

S. Data Collection 

To address these study goals, the following standard set of SEL data for Ada projects will be 
collected: 

Size, effort, and schedule estimates (Project Estimates Forms) 

0 Weekly development effort (Personnel Resources Forms) 

Growth data (Component Origination Forms and SJX librarians) 

e Change and error data (Change Report Forms and SEL librarians) 

SEL-94-002 128 



Appendix C . List of Rules 

. Rule ms 
Understand that software measurement is a means to an end, not an end in itself ......................... 2 
Focus on applying results rather than collecting data ................................................................. 13 
Understand the goals ................................................................................................................. 22 
Understand how to apply measurement ..................................................................................... 22 

Plan to achieve an early success ................................................................................................ 23 
Focus locally ............................................................................................................................. 24 
Start small ................................................................................................................................. 24 
Organize the analysts separately from the developers ................................................................. 26 
Make sure the measures apply to the goals ................................................................................ 28 
Keep the number of measules to a minimum ............................................................................. 29 

Budget for the cost of the measurement program ...................................................................... 30 
Plan to spend at least three times as much on data analysis and use as on data collection ........... 33 
Collect effort data at least monthly ............................................................................................ 37 
Clarify the scope of effort data collection .................................................................................. 37 
Collect error data only for controlled software .......................................................................... 39 
Do not expect to measure error correction effort precisely ........................................................ 40 

Do not expect to find a database of process measurements ........................................................ 42 

Set expectations ........................................................................................................................ 23 

Avoid over-reporting measurement data .................................................................................... 29 

Do not expect to find generalized, well-defined process measures ............................................. 41 

Understand the high-levei process characteristics ...................................................................... 42 
Use simple definitions of life-cycle phases ................................................................................. 45 
Use lines of code to represent size ............................................................................................. 45 
Specify which software is to be counted .................................................................................... 48 
Do not expect to automate data collection ................................................................................ 54 
Make providing data easy ...................................................................................................... 55 
Use commercially available tools ............................................................................................... 56 

Expect measurement data to be flawed, inexact, and inconsistent .............................................. 57 

129 SEL-94-002 





Abbreviations and Acronyms 

AGSS 

CASE 

CDR 

CM 

CMM 

Code Q 

COTS 

CPU 

DBMS 

DLOC 

GSFC 

IV&V 

JSC 

KDLOC 

KSLOC 

NASA 

PDR 

QA 

R&D 
S AMPEXTS 

1 ::I 

SEL 

SLOC 

SME 

SOHOTELS 

attitude ground support system 

computer-aided software engineering 

critical design review 

configuration management 

Capability Maturity Model 

Office of Safety and Mission Assurance (NASA) 

commercial off-the-shelf 

central processing unit 

database management system 

developed lines of code 

Goddard Space Flight Center 

independent verification and validation 

Johnson Space Center 

1,OOO developed lines of code 

1 ,OOO source lines of code 

National Aeronautics and Space Administration 

preliminary design review 

quality assurance 

r e s t z h  and development 

Solar, Anomalous, and Ma,,ietospheric Particle Explorer Telemetry 
Simulator 

Software Engineering Institute 

Software Engineering Laboratory 

source lines of code 

Software Management Environment 

Solar and Heliospheric Observatory Telemetry Simulator 





References 
__ 

1. 

2. 

3. 

4. 

5 .  

6. 

7. 

8. 

9. 

Grady, R. B., and Caswell, D. L., Software Metrics: Establishing a Company-Wide Program. 
Prentice-Hall Inc., Englewood Cliffs, NJ, 1989. 

NASA, DA3 Software Development Metrics Handbook, Version 2.1, JSC-255 19, Office of 
the Assistant Director for Program Support, Mission Operations Directorate, Johnson Space 
Center, Houston, April 1992. 

, DA3 Software Sustaining Engineering Metrics Handbook, Version 2.0, JSC-26010, 
Office of the Assistant Director for Program Support, Mission Operations Directorate, 
Johnson Space Center, Houston, December 1992. 

, DA3 Development Project Metrics Handbook, Version 5.0, JSC-36112, Office of the 
Assistant Director for Program Support, Mission Operations Directorate, Johnson Space 
Center, Houston, March 1993. 

Musa, J. D., Iannino, A., and Okumuto, K , Software Reliability: Measurement, Prediction, 
Application, McGraw-Hill, New York, 1987. 

Rifkin, S., and Cox, C., Measurement in Practice, CMIJ/SEI-91-TR-l6, Software Engineering 
Institute, Carnegie Mellon University, August 1991. 

Daskalantonakis, M. K., “A Practical View of Software Measurement and Implementation 
Experiences With Motorola,” IEEE Transactions on Software Engineering, Volume SE-18, 
November 1992. 

Decker, W., Hendrick, R., and Valett, J . ,  Software Engineering Laboratory Relationships, 
Models, and Management Rules, SEL-91-001. Software Engineering Laboratory, 
NASNGSFC, February 199 1. 

Condon, S., Regardie, M., Stark, M., and Wdigora, S., Cost and Schedule Estimation Study 
Report, SEL-93-002, Software “ngineering Laboratory, NASNGSFC, November 1993. 

10. Landis. L., McGarry, F., Waligora, S., et al., Manager’s Handbook for Software Development 
(Revision I ) ,  SEL-84-101, Software Engineering Laboratory, NASNGSFC, November 1990. 

11. Paulk, M. C., Curtis, B., Chrissis, M. B., and Weber, C. V., Capability Mziurity Model fnr 
Software, Version 1.1, CMU/SE1-93-TR-24, Software Engineering Institute, Cwnegie Mellon 
University, February 1993. 

12. McGany, F., and Jeletic, K., “Process Improvement as an Investment: Measuring Its Worth,” 
Proceedings of the Eighteenth Annual Software Engineering Workshop, SEL 93-003, 
NASNGSFC, December 1993. 

13. Currit, P. A., Dyer, M., and Mills, H. D., “Certifying the Reliability of Software,” IEEE 
Transactions on Software Engineering, Vol. SE- 12, No. 1. January 1986, pp. 3-1 1. 



14. Basili, V. R.. and Green, S., “The E\olution of Software Processes Based Upon Measurement 
in the SEL: The Cleanroom Example,” IEEE Software, To be published in 1994. 

15. Rombach, H. D.. Ulery. B. T.. and Valett. J. D.. “Toward Full Life Cycle Control: Adding 
Maintenance Measurement to the SEL,” Journal of Systems and Software. Vol. 18. 1992, 
pp. 125-138. 

16. Caldiera, G., McGarry, F., Waligora, S., Jeletic, K., and Basili. V. R., Software hocess 

17. International Function Point Users Group. Function Point Counting Practices Manual, Release 

18. McGarry. F.. “Experimental Software Engincering: Seventeen Years of Lessons in the SEL,” 
Proceedings of the Seventeenth Annual Software Engineering Workshop, SEL-92-004, 
NASNG -C, December 1992. 

19. Heller, G., Valett, J., and Wild. M., Data Collection Procedures for the Software Engineering 
Laboratory Database, SEL-92-00?. Software Engineering Laboratory, NASNGSFC, March 
1992. 

lngrovcment Guidebook, NASA-GB-002-94, Software Engineering Program, 1994. 

3.2, Westerville, Ohio, 1991. 

20.Decker, W. and Valett. J., Software Management Environment (SME) Concepts and 
Architecture, SEL-89-03. Software Engineering Laboratory, NASNGSFC, August 1989. 

21. Hall, D., Sinciair, C., and McGarry, F., Profile of Software at the Goddard Space Flight 
Center, NASA-RFT-002-94, Software Engineering Program, April i 994. 

22. Basili, CI. R., and Perricone, B. T., “Software Errors and Complexity: An Empirical 
Investigation,” Communkations of the ACM, Vol. 27, No. 1. Janudry 1984, pp. 42-53. 

SEL-94-002 134 



Standard Bibliography of SEL Literature 

The technical papers, memorandums, and documents listed in this bibliography are organized into 
t\.o groups. The first group is composed of documents issued by the Software Engineering 
Laboratory (SEL) during its research and development activities. The second group includes 
materials that were published elsewhere but pertain to SEL activities. 

SEL-ORIGINATED DOCUMENTS 

SEL-76-00], Proceedings From the First Summer Sojhvare Engineering Workshop, August 1976 

SEL-77-002, Proceedings From the Second Summer Sojbare Engineering Workshop, 
September 1977 

SEL-78-005, Proceedings From the Third SwnmEr Sofnare Engineering Workshop. September 
1978 

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study, P. A. Scheffer 
and C. E. Velez, November 1978 

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp, 
December 1978 

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User’s Guide (Revision 
3). W. J. Decker, W. A. Taylor, et al., July 1986 

SEL-79402, The Software Engineering Laboratory: Relationship Equations, K. Freburger and 
V. R. Basili, May 1979 

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language (PDL) in 
the GDddard Space Flight Center (GSFC) Code 580 Software Design Environment, C. E. 
Goorevich, L-.  L. Green, and W. J. Decker, September 1979 

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop, November 
1979 

SEL-80-002. Multi-Level Expression Design Language-Requirement Level (MEDL-R) SystOrn 
Svaluation, W. J. Decker and C. E. Goorevich. May 1980 

$EL-80-005, A Study of the Musa Reliability Model, A. M. Miller, November 1980 

SEL-80-006, Proceedings From the Fifth Annual Software Engineering Workshcp, November 
1980 

SEL-80-007, An Appraisal of Selected CostResource Estimation Models for Software Systems, 
J. F. Cook and F. E. McGarry, December 1980 

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering, V. R. 
Basili, 1980 

135 SEL-94-02 



SEL-81-011, Evaluating Software Development by Analysis of Change Data, D. M. Weiss, 
November 198 1 

SEL-81-012, The Rayleiph Curve as a Model for Effort Distribution Over the Life of Medium 
Scale Software Systems, G. 0. Picasso, December 1981 

SEL-8 1 -01 3, Proaxdings of the Sixth Annual Software Engineering Workshop, December 198 1 

SEL-81-014, Automated Collection of Software Engineering Data in the Software Engiileering 
Laboratory (SEL), A. L. Green, W. J. Decker, and F. E. McGan-y, September 1981 

SEL-81-101, Guide to Data Collection. V. E. Church, D. N. Card, F. E. McGarry. et al., August 
1982 

SEL-81-101, The Software Engineering Laboratory, D. N. Card, F. E. McGany, G. Page, et al., 
February 1982 

SEL-8 1 - 1 10, Evaluation of an Independent Verification and Validation (IV&V) Methodology for 
Flight Dynamics, G. Page, F. E. McGarry. and D. N. Card, June 1985 

SEL-81-305, Recommended Approach to Software Development, L. Landis, S. Waligora, F. E. 
McC-any, et al., June 1992 

SEL-8 1 -305SP1. Ada Developers' Supplement to the Recommended Approach, R. Kester and L. 
Landis. November 1993 

SU-82-001, Evaluation of Management Measures of Software Development, G. Page, D. N. 
Card, and F. E. McGarry, September 1982, vols. 1 and 2 

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982 

SEL-82-097, Proceedings of the Seventh Annual Software Engineering Worbhop, Deceniber 
1982 

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From the 
Software Engineering Laboratory, V. R. Basili and D. M. Weiss, December 1982 

SEL-82-102, FORTRAN Static Source Code Analyzer Program (SAP) System Description 
(Revision 1). W. A. Taylor and W. J. Decker, April 1985 

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst, M. G. Rohleder, 
and F. E. McGany, October 1983 

SEL-82-1206, Annotated Bibliography of Software Engineering Laboratory Literature, L. 
Morusiewicz and J. Valett, November 1993 

SEL-83-001, An Approach to Software Cost Eqtimation, F. E. McGany, G. Page, D. N. Card, et 
al.. February 1984 

SEL-83-002, Measures and Metrics for Software Development, D. N. Card, F. E. McGany, G. 
Page, et al., March 1984 

SEL-83-03, Collected Software Engineering Papers: Volume 11, November 1983 

SEL-94-002 136 



SEL-83-00?, Proceedings of the Eighth Annual Software Engineering Workshop, November 
1983 

SEL-83-106, Monitoring Software Development Through Dynamic Variables (Revision 1). C. W. 
Doerflinger, November 1989 

SEL-84-03, Investigation of Specification Measures for the Software Engineering Laboratory 
(SEL), W. W. Agresti, V. E. Chum.. and F. E. McGany, December 1984 

SEL-84-004, Proceedings of the Ninth Annual Software Engineering Workshop. November 1984 

SEL-84-101, Manager's Handbook for Software Development (Revision 1). L. Landis, F. E. 
McGany, S. Waligora, et al., November 1990 

SEL-85-01, A Comparison of Software Verification Techniques, D. N. Card, R. W. Selby, Jr., 
F. E. McGarry, et al., April 1985 

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray Observatory 
Ada Development Team. R. Murphy and M. Stark, October 1985 

SEL-85-003, Collected Software Engineering Papers: Volume III, November 1985 

SEL-85-OoQ. Evaluations of Software Technologies: Testing, CLEANROOM, and Metria, R. 
W. Selby, Jr., and V. R. Basili, May 1985 

SEL-85-005, Software Verification and Testing, D. N. Card. E. Edwards, F. McGarry, and C. 
Antle, Cxember 1985 

SEL-85-06. Proceedings of the Tenth Annual Software Engineering Workshop, December 1985 

SEL-86-001, Programmer's Handbook for Flight Dynamics Software Development, R. Wood and 
E. Edwards, March 1986 

SEL-S5-002, General Object-Oriented Software Development E. Seidewitz and M. Stark, 
August 1986 

SEL-86-003, Flight Dynarmcs System Software Development Environment (FDVSDE) Tutorial, 
J. Buell and P. Myers, July 1986 

SEL-86-004. Collected Software Engineering Papers: Volume IV, November 1986 

SEL-86-005. Measuring Software Design, D. N. Card et al., November 1986 

SEL-86-006. Proceedings of the Eleventh Annual Software Engineering Workshop, December 
I986 

SEL-87-001. Product Assurance Policies and Procedures for Flight Dynamics Software 
Development, S. Perry et d., March 1987 

SEL-87-002, Ada@ Style Guide (Version 1.1) .  E. Seidewitz et al., May 1987 

SEL-87-003, Guidelines for Applying the Composite Specification Model (CSM), W. W. A p t i ,  
June 1987 

137 SEL-94-002 



SEL-87-004, Aswsing the Ada@ Design Process and Its Impiications: 
Godfrey, C. Brophy, et al., July 1987 

SEL-87-009, Collected Software Engineering Papers: Volume V, November 1987 

SEL-87-010, Proceedings of the Twelfth Annual Software Engineering Workshop, December 
1987 

A Case Study, S. 

SEL-88-001, System Testing of a Production Ada Roject: The GRODY Study, J. Seigle, L. 
Esker, and Y. Shi, November 1988 

SEL-88-02. Collected Software Engineering Papers: Volume VI, November 1988 

SU-88403 ,  Evolution of Ada Technology in the Flight Dynamics Area: Design phase Analysis. 
K. Quimby and L. Esker, December 1988 

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop, November 
1988 

SEL-88-005. Roceedings of the First NASA Ada User's Symposium, December 1988 

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study, S. Godfrey and 
C. Brophy, September 1989 

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area: Implementatioflesting 
Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and F. McGany, November 1989 

SEL-89-05, Lessons Learned in the Transition to Ada From FORTRA-N at NASNGoddard, C. 
Brophy, November 1989 

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989 

SEL-89-007, Proaxdings of the Fourteenth Annual Software Engineering Workshop, November 
1989 

SEL-89-008, Proceedings of the Second NASA Ada Users' Symposium, November 1989 

SEL-89-103, Software Management Environment (SME) Concepts and Architecture (Revision 
1). R. Hendrick, D. Kistler, and J. Valet& September 1992 

SEL-89-301, Software Engineering Laborary (SEL) Database Organization and User's Guide 
(Revision 3), L. Morusiewicz, December 1993 

SEL-90-001, Database Access Manager for the Software Engineering Laboratory (DAMSEL) 
User's Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990 

SEL-90402, The Cleanroom Case Study in the Sofnkrare Engineering Laboratory: Project 
Description and Early Analysis, S. Green et al., March 1990 

SEL-90-003, A Study of the Portability of an Ada System in the Software Engineering 
Laboratory (SEL), L. 0. Jun and S. R. Valett, June 1990 

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experiment 
Summary, T. McDermott and M. Stark, September 1990 

SEL-94-02 138 



SEL-90-005, Collected Software Engineering Papers: Volume VIII, November 1990 

SEL-90-006. Proceedings of the Fifteenth Annual Software Engineering Workshop. November 
1 990 

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and Management 
Rules, W. Decker, R. Hendrick. and J. Valett. February 

SEL-91-03. Software Engineering Laboratory (SEL) 
Booth and M. E. Stark, July 1991 

SEL-9 1 - 0 4 ,  Software Engineering Laboratory (SEL 
November 199 1 

99 1 

Ada Performance Study Report, E. W. 

Cleanroom Process Model, S. Green, 

SEL-91-005, Collected Software Engineering Papers: Volume IX, November 1991 

SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop, December 
1991 

SEL-91-!02, Software Engineering Laboratory (SEL) Data and Infomation Policy (Revision l) ,  
F. McGarry, August 1991 

SEL-92401, Software Management Environment (SME) Installation Guide, D. Kistler and K. 
Jeletic, January 1992 

SEL-92-002. Data Collection F’rocedures for the Software Engineering Labratory (SEL) 
Database, G. Heller, J. Valett, and M. Wild, March 1992 

SEL-92-03, Collected Software Engineering Papers: Volume X, November 1992 

SEX-92-04, Proceedings of the Seventeenth Annual Software Engineering Workshop, December 
1992 

SEL-93-001. Collected Software Engineering Papers: Volume XI, November 1993 

SEL-93-02. Cost and Schedule Estimation Study Report, S.  Condon, M. Regardie, M. Stark, et 
al., November 1993 

SEL-93-003, Proceedings of the Eighteenth Annual Software Engineering Workshop, December 
1993 

SEL-94-OO1, Software Management Environment (SME) Components and Algorithms, R. 
Hendrklr, D. Kistler. and J. Valett, February 1994 

SEL-94-02, Software Measurement Guidebook, M. Bassman, F. McGarry, R. Pajerski, July 
1994 

SEL-RELATED LITERATURE 

I0Abd-El-Hafiz. S. K., V. R. Basili, and G. Caldiera, “Towards Automated Support for 
Extraction of Reusable Components,” Proceedings of the IEEE Conference on Software 
Maintenance- 199 1 (CSM 9 1 ), October 1 99 1 

I39 SEL-94-002 



4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo, “Designing With Ada for Satellite 
Simulation: A Case Study,” Proceedings of the First International Symposium on Ada for the 
NASA Space Station, June 1986 

-Agresti, W. W., F. E. McGarry, D. N. Card, et al., “Measuring Software Technology,” Program 
Transformation and Programming Environments. New York: Springer-Verlag, 1984 

‘Bailey. J. W., md V. R. Basili, “A Meta-Model for Software Development Resource 
Expenditures,” Proceedings of the Fifth International Conference on Software Engineering. New 
York: IEEE Corriputer Society Press, 1981 

8Bailey. J. W., and V. R. Basili, “Software Reclamation: Improving Post-Development 
Reusability,” Proceedings of the Eighth Annual National Coaference on Ada Technology, March 
1 990 

‘OBailey, J. W., and V. R. Basili, “The Software-Cycle Model for Re-Engineering and Reuse,” 
Proceedings of the ACM Tri-Ada 91 Conference, October 1991 

‘Basili. V. R., “Models and Metrics for Software Management and Engineering,” ASME 
Advances in Computer Technology, January 1980, vol. 1 

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering. New 
York: IEEE Computer Society Press, 1980 (also designated SEL-80-008) 

3Basili. Y. R., “Quantitative Evaluation of Software Methodology,” Proceedings of the First Pan- 
Pacific Computer Conference. September 1985 

’Basili, V. R., Maintenance = Reuse-Oriented Software Development, University of Maryland, 
Technical Report TR-2244, May 1989 

7Basili, V. R., Software Development: A Paradigm for the Futiire, University of Maryland, 
Technical Report TR-2263, June 1989 

8Basili, V. R., “Viewing Maintenance of Reuse-Oriented Software Development,” IEEE 
Software, January 1990 

‘Basili, V. R., and 3. Beane. ‘‘Can the Parr Curve Help With Manpower Distribution and 
Resource Estimation Problems?,” Journal of Systems and Software, February 1981 , vol. 2, no. 1 

9Basili, V. R., G. Caldiera, and G. Cantone, “A Referencc Architecture for the Component 
Factory,”ACM Transactions on Software Engineering and Methodology, January 1992 

‘%asili, V., G. Caldiera, F. McGarry, et al., ‘The Software Engineering Laboratory-An 
Operational Software Experience Factory,” Proceedings of the Fourteenth International 
Conference on Software Engineering (ICSE 92). May 1992 

‘Basili, V. R., and K. Freburger, ‘‘Programming Measurement and Estimaticn in the Software 
Engineering Laboratory,” Journal of Systems and Software, February 1981, vol. 2, no. 1 

3Basili, V. R., and N. M. Panlilio-Yap, “Finding Relationships Between Effort and Other 
Variables in the SEL,” Proceedings of the International Computer Software and Applications 
Conference, October 1985 

7 

SEL-94-002 140 



4Basili, V. R., and D. Patnaik, A Study on Fault hdiction and Reliability Assessment in the SEL 
Environment, University of Maryland, Technical Report TR- 1699, August 1986 

2Basili, V. R., and B. T. Pemcone, “Software Errors and Complexity: An Empirical 
Investigation,” Communications of the ACM, January 1984, vol. 27, no. 1 

‘Basili, V. R., and T. Phillips, “Evaluating and Comparing Software Metrics in the Software 
Engineering Laboratory,” Proceedings of the ACM SIGMETRICS Sympsiuflorkshop: 
Quality Metrics, March 1981 

3Basili, V. R., and C. L. Ramsey, “ARROWSMITH-P-A Prototype Expert System for Software 
Engineering Management,” Proceedings of the IEEE/MITRE Expert Systems in Government 
Symposium, October 1985 

Basili, V. R., and J. Ramsey, Structural Coverage of Functional iesting, University of Maryland, 
Technical Report TR-1442, September 1984 

Basili, V. R.. and R. Reiter, “Evaluating Automatable Measures for Software Development,” 
Proceedings of the Workshop on Quantitative Software Models for Reliability, Complexity, and 
Cost. New York: IEEE Computer Society Press, 1979 

5Basili, V. R., and H. D. Rombach, ‘Tailoring the Software Process to Project Goals and 
Environments,” Proceedings of the 9th International Conference on Software Engineering, March 
1987 

SBasili, V. R., and H. D. Rombach, “TAME: Tailoring an Ada Measurement Environment,” 
Proceedings of the Joint Ada Conference, March 1987 

SBasili, V. R., and H. D. Rombach, “TAME: Integrating Measurement Into Software 
Environments,” University of Maryland, Technical Report TR- 1764, June 1987 

6Basili. V. R.. and H. D. Rombach, ‘The TAME Project: Towards Improvement-Oriented 
Software Environments,” IEEE Transactions on Software Engineering, June 1988 

7Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: A Reuse- 
Enabling Software Evolution Environment, University of Maryland, Technical Report TR-2158, 
December 1988 

SBasili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: Model- 
Based Reuse Characterization Schemes, University of Maryland, Technical Report TR-2446, 
April 1990 

%hili, V. R., and H. D. Rombach, “Support for Comprehensive Reuse,” Software Engineering 
Journal, September 1991 

3Basili, V. R., and R. W. Selby, Jr., “Calculation and Use of an Environment’s Characteristic 
Software Metric Set,” Proceedings of the Eighth Internatiord Conference on Software 
Engineering. New York: IEEE Computer Society Press, 1985 

Basili, V. R., and R. W. Selby, “Comparing the Effectiveness of Software Testing Strategies,” 
IEEE Transactions on Software Engineering, December 1987 

141 SEL-94-002 



3Basili, V. R., and R. W. Selby, Jr., “Four Applications of a Software Data Collection and 
Analysis Methodology,” Proceedings of the NATO Advanced Study Institute, August 1985 

SBasili, V. R., and R. Selby, “Comparing the Effectiveqess of Software Tes’Ling Strategies,” IEEE 
Transactions on Software Engineering, December 1987 

9Basili. V. R., and R. W. Selby, “Paradigms for Experimentation and Empirical Studies m 
Software Engineering,” Reliability Engineering and System Safety, January 1991 

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, “Experimentation in Software Engineering,” 
IEEE Transactions on Software Engineering, July 1986 

*Basili, V. R., R. W. Selby, and T. Phillips, “Metric Analysis and Data Validation Across 
FORTRAN Projects,** IEEE Transactions on Software Engineering, November 1983 

*Basili, V. R., and D. M. Weiss, A Methodology for Collecting Vaiid Software Engineering Data, 
University of Maryland, Technical Report TR- 1235, December 1982 

3Basili, V. R., and D. M. Weiss, “A Methodology for Collecting Valid Software Engineering 
Data,” IEEE Transactions on Software Engineering, November 1984 

‘Basili, V. R., and M. V. Zelkowitz, “The Software Engineering Laboratory: Objectives,” 
Proceedings of the Fifteenth Annual Conference on Computer Personnel Research, August 1977 

Basili, V. R., and M. V. Zelkowitz, “Designing a Software Measurement Experiment,” 
Proceedings of the Software Life Cycle Management Workshop, September 1977 

‘Basili, V. R., and M. V. Zelkowitz, “Operation of the Software Engineering Laboratory,” 
Proceedings of the Second Software Life Cycle Management Workshop, August 1978 

IBadi, V. R., and M. V. Zelkowitz, “Measuring Software Dewlopment Characteristics in the 
Local Environment,” Computers and Structures, August 1978, vol. 10 

Basili, V. R., and M. V. Zelkowitz, “Analyzing Medium Scale Software Development,’, 
Proceedings of the Third International Conference on Software Engineering. New Yofk IEEE 
Computer Society Press, 1978 

Bassman, M. J., F. McGarry, and R. Pajerski, Software Measurement GuidebooK, NASA-GB- 
001 -94, Software Engineering Program, July 1994 

9Booth, E. W., and M. E. Stark, “Designing Configurable Software: COMPASS Implementation 
Concepts,” Proceedings of Tri-Ada 1991, October 1991 

lOBooth, E. W., and M. E. Stark, “software Engineering Laboratory Ada Performance 
Study-Results and Implications,” Proceedings of the Fourth Annual NASA Ada User’s 
Symposium, April 1992 

l%riand, L. C., and V. R. Basili, “A Classification Procedure for the Effective Management of 
Changes During the Maintenance Process,” Proceedings of the 1992 IEEE Conference on 
Software Maintenance (CSM 92), November 1992 

SEL-94-002 142 



‘OBriand, L. C., V. R. Basili, and C. J. Hetmanski, “Providing an Empirical Basis for Optimizing 
the Verification and Testing Phases of Software Development,,’ Proceedings of the Third E E E  
International Symposium on Software Reliability Engineering (ISSF& 92)- October 1992 

“Briand, L. C., V. R. Basili, and C. J. Hetmanski, Developing Interpretable Models with 
Optimized Set Reduction for Identifying High Risk Software Components, TR-3048, University 
of Maryland, Technical Report, March 1993 

%nand, L. C., V. R. Basili, and W. M. Thomas, A Pat2rn Recognition Approach for Software 
Engineering Data Analysis, University of Maryland, Technical Report TR-2672. May 199 1 

IiBriand, L. C., S .  Morasca, and V. R. Basili, “Measuring and Assessing Maintainability at the 
End of High Level Design,” Proceedings of the 1993 IEEE Conference on Software Maintenance 
(CSM 93). November 1993 

“Briand, L. C., W. M. Thomas, and C. J. Hetmanski, “Modeling and Managing Risk Early in 
Software Development,” Proceedings of the Fifteenth International Conference on Software 
Engineering (ICSE 93), May 1993 

5Brophy, C. E., W. W. Agresti, and V. R. Basili, “Lessons barned in Use of Ada-Oriented 
Design Methods,” Proceedings of the Joint Ada Conference, March 1987 

6Brophy, C. E., S. Godfrey, W. W. Aps t i ,  and V. R. Rasili, “Lessons Learned in the 
Implementation Phase of a L;ge Ada Project,” Proceedings of the Washington Ada Technical 
Conference, March 1988 

qard.  D. N., “Early Estimation of Resource Expenditures and Program Size.” Compute: 
Sciences Corporation, Technical Memorandum, June 1982 

qard,  D. N., “Comparison of Regression Mode!ing Techniques for Resource Estimation,” 
Computer Sciences Corporation, Technical Memorandum, November 1982 

3Card, D. N., “A Software Technology Evaluation Program,” Annais do XVIII Congress0 
Nacional de Informatica, October 1985 

5Card, D. N., and W. W. Agresti, “Resolving the Software Science Anomaly,” Joamal of Systems 
and Software, 1987 

6Card, D. N., and W. W. Agresti, “Measuring Software Design Complexity,” Joiunal of Systems 
and Software, June 1988 

4Card, D. N., V. E. Church, and W. W. Agresti, “An Empirical Study of Software Design 
Practices,” IEEE Transactions on Software Engineering, February 1986 

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan, “A Software Engineering View of 
Flight Dynamics Analysis System,” Parts I and 11, Computer Sciences Corporation, Technical 
Memorandum, February 1984 

Card, D. N., Q. L. Jordan, and V. E. Church, “Characteristics of FORTRAN Modules,” 
Computer Sciences Corporation, Technical Memorandum, June 1984 

SCard, D. N., F. E. McGany, and G. T. Page, “Evaluating Software Engineering Technologies,” 
IEEE Transactions on Software Engineering, July 1987 

143 SEX-94-002 



3Card, D. N., G. T. Page, and F. E. McGany, “Criteria for Software Modularization,” 
Proceedings of the Eighth International Conference on Software Engineering. New York: IEEE 
Computer Society Press, 1985 

‘Chen, E., and M. V. Zelkowitz, “Use of Cluster Analysis To Evaluate Software Engineering 
Methodologies,” Proceedings of the Fifth International Conference on Software Engineering. 
New York: IEEE Computer Society Press, 1981 

4Church, V. E., D. N. Card, W. W. Agresti, and Q. L. Jordan, “An Approach for Assessing 
Software Prototypes,” ACM Software Engineering Notes, July 1986 

*Doerflinger, C. W., and V. R. Basili, “Monitoring Software Development Through Dynamic 
Variables,” Proceedings of the Seventh International Computer Software and Applications 
Conference. New York: IEEE Computer Society Press, 1983 

Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of Maryland, 
Technical Report TR-1895, August 1987 (NOTE: 1 0 0  pages long) 

6Godfrey, S., and C. Brophy, “Experiences ;n the Implementation of a Large Ada Project,” 
Proceedings of the 1988 Washington Ada Symposium, June 1988 

SJeffexy, D. R., and V. Basili, Characterizing Resource Data: A Model for Logical Association of 
Software Data, University of MLyland, Technical Report TR- 1848, May 1987 

6Jeffery, D. R., and V. R. Basili, “Validating the TAME Resource Data Model,” Proceedings of 
the Tenth International Conference on So€tware Engineering, Auril 1988 

llLi, N. R., and M. V. Zelkoa;tz, “An Information Model for Use in Software Management 
Estimation and Prediction,” Proceedings of the Second International Conference on Information 
Knowledge Management, November 1993 

5Mark, L., and H. D. Rombach, A Meta Information Base for Software Eagineering, University 
of Maryland, Technical Report TR-1765, July 1987 

6Mark, L., and H. D. Rombach, “Generating Cusiomized Software Engineering Information 
Bases From Software Process and Product Specifications,” Proceedings of the 22nd Annual 
Hawaii International Conference on Syste XI Sciences, January 1989 

5McGarry, F. E.. and W. W. Agresti, “Measuring Ada for Software Development in the Software 
Engineering Laboratory (SEL),” Proceedings of the 21 st Annual Hawaii International Conference 
on System Sciences, January 1988 

’McGany, F., L. Esker, and K. Quimby, “Evolution of Ada Technology in a Production software 
Environment,” Proceedings of the Sixth Washington Ada Symposium (WADAS), June 1989 

3McGarry, F. E., J. Valett, and D. Hall, “Measuring the Impact of Computer Resource Quality on 
the Software Development Process and Product,*’ Proceedings of the Hawaiian International 
Conference on System Sciences, January 1985 

3Page, G., F. E. McGany, and D. N. Card, “A Practical Experience With Independent 
Verification and Validation,” Proceedings of the Eighth International Computer Software and 
Applications Conference, November 1984 

SEL-94-02 144 



%&nsey, C. L., and V. R. Basili, “An Evaluation of Expert Sys,ms for Software Engineering 
Management,” IEEE Transactions on Software Engineering, June 1989 

3Ramsey, J., and V. R. Basili, “Analyzing the Test Process Using Structural Coverage,” 
Proceedings of the Eighth International Conferepce on Software Engineering. New York: IEEE 
Computer Society Press, 1985 

SRombach, H. D., “A Controlled Experiment on the Impact of Software Structure on 
Maintainability,” W E  Transactions on Software Engineering, March 1987 

8Rombach. H. D., “Design Measurement: Some Lessons Learned,” IEEE Software, March 1990 

9Rombach, H. D., “Software Reuse: A Key to the Maintenance Problem,” Butterworth Journal 
of Information and Software Technology, JanuaryFebruary 199 1 

bRombach, H. D., and V. R. Basili, “Quantitative Assessment of Maintenance: An Industrial 
Case Study,” Proceedings From the Conference on Software Maintenance, September 1987 

6Rombach, H. D., and L. Mark, “Software Process and Product Specifications: A Basis for 
Generating Customized SE Information Bases,” Proceedings of the 22nd Annual Hawaii 
International Conference on System Sciences, January 1989 

TRombach, H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance Improvement 
Program: Lessons Learned in the SEL, University of Maryland, Technical Report TR-2252, May 
1989 

1°Rambach, H. D., B. T. Ulery, and J. D. Valett; “Toward Full Life Cycle Control: Adding 
Maintenance Measurement to the SEL,” Journal of Systems acd Software, May 1992 

bSeidewitz, E., “Object-Oriented Programming in Smalltalk and Ada,” Proceedings of the 1987 
Conference on Object-Oriented Programming Systems, Languages, and Applications, October 
1987 

SSeidewitz. E., “General Object-Oriented Software Development: Background and Experience,” 
Proceedings of the 21st Hawaii Internation. 

bseidewitz, E., “General Object-Oriented Software Development with Ada: A Life Cycle 
Approach,” Proceedings of the CASE Technology Conference, April 1988 

gSeidewitz, E., “Object-Oriented Programming Through Type Extension in Ada 9X,” Ada 
Letters, MarcldApril 1991 

IOSeidewitz, E., “Object-Oriented Programming With Mixins in Ada,” Ada Letters, MarcWApril 
1992 

4Seidewitz, E., and M. Stark, “Towards a General Object-Oriented Software Development 
Methodology,” Proceedings of the Fist International Symposium on Ada for the NASA Space 
Station, June 1986 

9Seidewitz. E., and M. Stark, “An Object-Oriented Approach to Parameterized Software in Ada,” 
Proceedings of the Eighth Washington Ada Symposium, June 1991 

:onference on System Sciences, January 1988 

145 SEL-94-002 



@hark, M., “On Designing Parametrized Systems Using Ada,’’ Proccedings of the Seventh 
Washington Ada Symposium, June 1990 

‘Stark, M., “Impacts of Object-Oriented Technologies: Seven Years of SEL Studies,” 
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and 
Apylications, September 1993 

’Stark, M. E. and E. W. Booth, “Using Ada to Maximize Verbatim Software Reuse,” 
Proceedings of TRI-Ada 1989, October 1989 

SStark, M., and E. Seidewitz, “Towards a General Object-Oriented Ada Lifecycle,” Proceedings 
of the Joint Ada Conference, March 1987 

1°Stracb, P. A., and M. V. Zelkowitz, “On the Nature of Bias and Defects in the Software 
Specification Process,” Proceedings of the Sixteenth International Computer Software and 
Applications Copference (COMPSAC 92), September 1992 

*Straub, P. A., and M. V. Zelkowitz, “PUC: A Functional Specification Language for Ada,” 
Proceedings of the Tenth International Conference of the Chilean Computer Science Society, July 
1990 

7Sunazuka, T., and V. R. Basili, Integrating Automated Support for a Software Management 
Cycle Into the TAME System, Uimersity of Maryland, Technical Report TR-2289, July 1989 

lqian,  J., A. Porter, and M. V. Zelkowitz, “An Improved Classification Tree Analysis of High 
Cost Modules Based Upon an Axiamatic Definition of Complexity,” Proceedings of the Third 
IEEE International Symposium on Software Reliability Engineering (ISSRE 92), October 1992 

Turner, C., and G. Caron, A Cornpaikon of RADC and NASNSEL Software Development Data, 
Data and Analysis Center for Software, Special Publication, May 198 1 

1Walett, J. D., “Automated Support for Experience-Based Software Management,” Proceedings 
of the Second Irvine Software Symposium (ISS -92), March 1992 

5Valett, J. D., and F. E. McGarry, “A Summary of software Measurement Experiences in the 
Software Engineering Laboratory,” Proceedings of the 2 1 st An?ual Hawaii International 
Conference on System Sciences, January 1988 

3Weiss, 9. M., and V. R. Basili, “Evaluating Software Development by Analysis of Changes: 
Some Data From the Software Engineering Laboratory,” IEEE Transactions on Software 
Engineering, February 1985 

5Wu, L., V. R. Basili, and K. Reed, “A Structure Coverage Tool for Ada Softwxe Systems,” 
Proceedings of the Joint Ada Conference, March 1987 

lZelkowitz, M. V., “Resource Estimation for Medium-Scale Softwaii Projects,” Proceedings of 
the Twelfth Conference on the Interface of Statistics and Computer Science. New York: IEEE 
Computer Society Press, 1979 

2Zelkowitz, M. V.. “Data Collection and Evaluation for Experimental ComputLr Science 
Research,” Empirical Foundations for Computer and Information Science (Proceedings), 
November 1982 

SEL-94-002 146 



6Zelkowitz. M. V .( “The Effectiveness of Software Prototyping: A Case Study,” Proceedings of 
the 26th Annual Technical Symposium of the Washington, D.C., Chapter of the ACM, June 1987 

6Zelkowitz. M. V., “Resource Utilization During boftware Development,” Journal or Systems 
and Software, 1988 

8Zelkowitz, M. V., “Evolution Towards Specificadons Environment: Experiences With Syctax 
Editors,” Information and Software Technology, April 1990 

147 SEL-94-002 



NOTES 
'This article also appears in SEL-82-04. Collected Sofiare Engineering Papers: Volume I ,  
July 1982. 

* n i s  article also appears in SEL-83-003, Collected Software Engineering Papers: Volume 11, 
Noveir.kr 1983. 

3This article also appears in SEL-85-003, Collected Software Engineering Papers: Volume Zll, 
November 1985. 

4This article also appears in SEL-86-004, Collected Software Engineering Papers: Volume N, 
November 1986. 

article also 31,'~ m in SEL-87-009, Collected Software Engineering Papers: Volume V, 
Novemkr 1987. 

%s article also appears in SEL-88-002, Colle...dd Software hgineering Papers: Volume VI, 
November 1988. 

7This article also appears in SEL-89406, Collected Sofhyare Engineering Papers: Volume VZZ, 
November 1989. 

8This article 4x1 appears in SEL-9O-005, Collected Sofnyare Engineering Papers: Volume Vilf,  
November 1990. 

%s article also appears in SEL-91-05. Collected Sojiware Engineering Papers: Volwne IX, 
Navtmber 199 1 .  

I h s  article also appears in SEL-92-003, Collected Sqfmare Engineering Papers: Volume X, 
November 1992. 

IIThis anicle also appears in SEL-93-001. Collecicd Soware Engimering Papers: Vohme XI ,  
November 1993. 

SEL-94 002 



REPORT DOClJMENTdklON PAGE 

. *> . "  c . L-' 

FonnAppmved I OM6 NO. 0704-0188 

Software Engineering Laboratory 

SEL-94-02 

CR- 1 89407 

I 

11. SUPPLaaaCTARVNOrrS r 
1%. ~ A V A U B U W S T A l E M E N r  

Unclassified-Unlimited 
Subject Category: 61 
Report is available from the NASA Center for AeroSpace Information. 
800 Elkridge Landing Road. Linthicum Heights, MD 21090. (301) 621-0390. 

13. ABsmcT~mHordsJ 

This software Measurement Guidebook presents information on the purpose and importance of measurement. It 
discusses the specific procedures and activities of a measurement program and the roles of the people involved. The glide 
book also clarifies the roles that measurement can and must play in the goal of contiual, sustained improvement for all 
softwarc production and maintenance efforts. 

I--- - 

b5 NUMEER OF PAGES 

Software Measurement I t--- 16. PRICECODE 


